ARTÍCULO
TITULO

Research on Structural Collapse of a Containership under Combined Bending?Torsion by Oblique Waves

Weiqin Liu    
Qilu Zou    
Yaqiang Zhang    
Yong Nie and Xuemin Song    

Resumen

Large waves cause a great number of collapsed-ship accidents, resulting in the loss of many lives and properties. It has been found that most of these collapses are caused by encountering oblique waves. As a result, the ship structure experiences a complex collapse under combined bending and torsion. This paper utilizes a numerical hydroelasto-plastic approach, coupling CFD (Computational Fluid Dynamics) with the nonlinear FEM (Finite-Element Method), to study the structural collapse of a containership in oblique waves. First, a 4600 TEU containership was selected to study its collapse mechanism under oblique waves. Second, a hydroelasto-plastic numerical coupling of CFD and nonlinear FEM is used to co-calculate the wave loads and structural collapse of containership. The hydrodynamic model is constructed and used to solve wave loads in the CFD solver, and a nonlinear FEM model of containership with finer meshes is also modeled to solve the structural collapses, including plasticity and buckling. Third, several oblique-wave cases involving heading angles of 120°, 135°, 150°, and 180° are determined and calculated. Typical cases are discussed for time-domain stress histories and collapsed courses. Finally, the influence of oblique-wave parameters on structural collapse is discussed, and the collapse mechanism of containerships under the action of oblique waves is obtained, which provides a new understanding of ship structure design.

Palabras claves

 Artículos similares

       
 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures

 
Julián Pulecio-Díaz, Miguel Sol-Sánchez and Fernando Moreno-Navarro    
Roller-compacted concrete (RCC) pavements have been the subject of studies focused on their increasing deterioration over time due to the influence of vehicular loading and ambient factors in humidity and temperature conditions ranging from medium to low... ver más
Revista: Infrastructures

 
Ping Xiao and Haiyan Wang    
In response to the optimal operation of ocean container ships, this paper presents a two-level planning model that takes into account carbon tax policies. This model translates the CO2 emissions of ships into carbon tax costs and aims to minimize the ove... ver más
Revista: Applied Sciences

 
Carmen Otilia Rusanescu, Maria Ciobanu, Marin Rusanescu and Raluca Lucia Dinculoiu    
This work is a comprehensive study focusing on various methods for processing wheat straw to enhance its suitability for bioethanol production. It delves into mechanical, physical, chemical, and biological pretreatments, each aimed at improving the enzym... ver más
Revista: Applied Sciences

 
Kyong Min Ro, Min Sook Kim and Young Hak Lee    
The previous research introduced an innovative retrofitting technique for reinforced concrete beams using modularized steel plates. This technique enhances structural performance, offering a lightweight solution compared to conventional retrofitting meth... ver más
Revista: Applied Sciences