Inicio  /  Applied Sciences  /  Vol: 10 Par: 2 (2020)  /  Artículo
ARTÍCULO
TITULO

Power Load Demand Forecasting Model and Method Based on Multi-Energy Coupling

Dunnan Liu    
Lingxiang Wang    
Guangyu Qin and Mingguang Liu    

Resumen

At the present stage, China?s energy development has the following characteristics: continuous development of new energy technology, continuous expansion of comprehensive energy system scale, and wide application of multi-energy coupling technology. Under the new situation, the accurate prediction of power load is the key to alleviate the problem that the planning and dispatching of the current power system is more complex and more demanding than the traditional power system. Therefore, firstly, this paper designs the calculation method of the power load demand of the grid under the multi-energy coupling mode, aiming at the important role of the grid in the power dispatching in the comprehensive energy system. This load calculation method for regional power grid operating load forecasting is proposed for the first time, which takes the total regional load demand and multi-energy coupling into consideration. Then, according to the participants and typical models in the multi-energy coupling mode, the key factors affecting the load in the multi-energy coupling mode are analyzed. At this stage, we fully consider the supply side resources and the demand side resources, innovatively extract the energy system structure characteristics under the condition of multi-energy coupling technology, and design a key factor index system for this mode. Finally, a least squares support vector machine optimized by the minimal redundancy maximal relevance model and the adaptive fireworks algorithm (mRMR-AFWA-LSSVM) is proposed, to carry out load forecasting for multi-energy coupling scenarios. Aiming at the complexity energy system analysis and prediction accuracy improvement of multi-energy coupling scenarios, this method applies minimal redundancy maximal relevance model to the selection of key factors in scenario analysis. It is also the first time that adaptive fireworks algorithm is applied to the optimization of adaptive fireworks algorithm, and the results show that the model optimization effect is good. In the case of A region quarterly load forecasting in southwest China, the average absolute percentage error of a least squares support vector machine optimized by the minimal redundancy maximal relevance model and the adaptive fireworks algorithm (mRMR-AFWA-LSSVM) is 2.08%, which means that this model has a high forecasting accuracy.

 Artículos similares

       
 
Qinsheng Yun, Xiangjun Wang, Shenghan Wang, Wei Zhuang and Wanlu Zhu    
This paper investigates the small-signal stability of a DC shipboard power system (SPS) with the integration of a supercapacitor. As an efficient energy storage solution, supercapacitors can not only provide rapid energy response to sudden power demand s... ver más

 
D. Criado-Ramón, L. G. B. Ruiz, J. R. S. Iruela and M. C. Pegalajar    
This paper introduces the first completely unsupervised methodology for non-intrusive load monitoring that does not rely on any additional data, making it suitable for real-life applications. The methodology includes an algorithm to efficiently decompose... ver más
Revista: Information

 
Jun Fang, Tianhong Zhang, Zhaohui Cen and Elias Tsoutsanis    
The starter generator, characterized by controllable starting torque and disturbance in generator load torque, poses challenges for the multi-electric aero engine control. The key to addressing this issue lies in multi-electric aero engine control with t... ver más
Revista: Aerospace

 
Chang-Ming Liaw, Chen-Wei Yang and Pin-Hong Jhou    
This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, phot... ver más
Revista: Aerospace

 
Jianfeng Zhu, Guochen Huang, Maoguang Xu, Ming Liu, Bo Diao and Po Li    
Combined with the development trend of high speed generators and the high voltage of DC microgrids in high-power series hybrid aero propulsion system, a set of hybrid systems with a power of 200 kW, voltage of 540 V, and speed of 21,000 r/min is establis... ver más
Revista: Aerospace