Resumen
This research investigates cavitation around a marine propeller, employing computational fluid dynamic (CFD) solvers, including an incompressible, isothermal compressible, and fully compressible flow. The investigation commenced with simulations utilizing an incompressible flow solver, subsequently extending to the two compressible flow solvers. In the compressible flow, there is a close interrelation between density, pressure, and temperature, which significantly influences cavitation dynamics. To verify computational methods, verification tests were conducted for leading-edge cavitating flows over a two-dimensional (2D)-modified NACA66 hydrofoil section at various cavitation numbers. The computational results were validated against the experimental data, with the solvers? capability to predict cavitation forming the basis for comparison. The results demonstrate consistent predictions among the solvers; however, the fully compressible flow solver demonstrated a superior performance in capturing re-entrant jets and accurately modeling cavity closure regions. Furthermore, the fully compressible flow solver precisely estimated propeller hydrodynamic performance, yielding results closely aligned with experimental observations.