Inicio  /  Geosciences  /  Vol: 12 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

Chimney Identification Tool for Automated Detection of Hydrothermal Chimneys from High-Resolution Bathymetry Using Machine Learning

Isaac Keohane and Scott White    

Resumen

Identifying the locations of hydrothermal chimneys across mapped areas of seafloor spreading ridges unlocks the ability to research questions about their correlations to geology, the cooling of the lithosphere, and deep-sea biogeography. We developed a Chimney Identification Tool (CIT) that utilizes a Convolutional Neural Network (CNN) to classify 1 m gridded AUV bathymetry and identify the locations of hydrothermal vent chimneys. A CNN is a type of Machine-Learning model that is able to classify raster data based on the shapes and textures in the input, making it ideal for this task. The criteria that have been used in previous manual classifications of chimneys have focused on the round base and spire shape of the features, and are not easily quantifiable. Machine-Learning techniques have previously been implemented with sonar data to classify seafloor geology, but this is the first application of these methods to hydrothermal systems. In developing the CIT, we compiled the bathymetry data from two rasters from the Endeavor Ridge?each gridded at a 1 m resolution?containing 34 locations of known hydrothermal chimneys, and from the 92° W segment of the Galapagos Spreading Center (GSC) containing 14. The CIT produced a primary group of outputs with 96% agreement with the manual classification; moreover, it correctly caught 29 of the 34 known chimneys from Endeavor and 10 of the 14 from the GSC. The CIT is trained to identify features with the characteristic shape of a hydrothermal vent chimney; therefore, it is susceptible to the misclassification of unusually shaped cases, given the limited training data. As a result, to provide the option of having a more inclusive application, the CIT also produced a secondary group of output locations with 61% agreement with the manual classification; moreover, it caught three of the four additional known chimneys from the GSC and four of the five from Endeavor. The CIT will be used in future investigations where an inventory of individual chimneys is important, such as the cataloguing of off-axis hydrothermal venting and the investigation of chimney distribution in connection to seafloor eruptions.

 Artículos similares

       
 
Lucie Mathieu, Taylor D. Wasuita, Ross Sherlock, Fred Speidel, Jeffrey H. Marsh, Benoît Dubé and Olivier Côté-Mantha    
Zircon provides essential information on the age and oxidation state of magmatic systems and can be used to characterize magmatic-hydrothermal Au mineralizing systems. Using the Douay intrusion-related gold system (IRGS) as a type example of Neoarchean s... ver más
Revista: Geosciences

 
Inna Morgunova, Petr Semenov, Anna Kursheva, Ivan Litvinenko, Sergey Malyshev, Sergey Bukin, Oleg Khlystov, Olga Pavlova, Tamara Zemskaya and Alexey A. Krylov    
This paper performs a detailed study of a wide set of organic-geochemical proxies in 15 sediment cores collected from the main basins of Lake Baikal (the northern, the central and the southern) where processes of focused fluid discharge were detected. A ... ver más
Revista: Geosciences

 
Saeed Mahmoodpour, Mrityunjay Singh, Christian Obaje, Sri Kalyan Tangirala, John Reinecker, Kristian Bär and Ingo Sass    
The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extracti... ver más
Revista: Geosciences

 
Joschka Röth and Ralf Littke    
The Cooper subregion within the central Eromanga Basin is the Swiss army knife among Australia?s sedimentary basins. In addition to important oil and gas resources, it hosts abundant coal bed methane, important groundwater resources, features suitable co... ver más
Revista: Geosciences

 
Nikolai Berdnikov, Victor Nevstruev, Pavel Kepezhinskas, Ivan Astapov and Natalia Konovalova    
While gold partitioning into hydrothermal fluids responsible for the formation of porphyry and epithermal deposits is currently well understood, its behavior during the differentiation of metal-rich silicate melts is still subject of an intense scientifi... ver más
Revista: Geosciences