Resumen
To integrate unmanned aerial vehicles (UAVs) into the national airspace in a safe manner, a risk-based approach to the regulation of UAVs is adopted in many countries. Thus, the capacity to permit UAVs in urban airspace also needs to be evaluated in a risk-based sense. In this regard, this paper proposes a methodology to analyze the capacity of UAV corridors on the basis of third-party risk on the ground. By linking the collision rate of the corridor and the failure rates of UAVs with the number of fatalities on the ground, the capacity of the UAV corridor is derived to satisfy the target level of safety. To model the collision rate of UAVs in the corridor, the Reich collision risk model is utilized. Moreover, a ground risk map is generated to compute the third-party risk on the ground using the databases for Seoul, Korea. The results show that the failure rate of UAVs is the dominant factor for determining the capacity of the corridor, even if the number of corridors increases. The proposed methodology could be useful to manage the number of flights for applications where the UAV corridor is fixed and flight continues, such as package delivery.