Inicio  /  Water  /  Vol: 7 Par: 11 (2015)  /  Artículo
ARTÍCULO
TITULO

Remote Sensing Based Analysis of Recent Variations in Water Resources and Vegetation of a Semi-Arid Region

Shaowei Ning    
Hiroshi Ishidaira    
Parmeshwar Udmale and Yutaka Ichikawa    

Resumen

This study is designed to demonstrate use of free remote sensing data to analyze response of water resources and grassland vegetation to a climate change induced prolonged drought in a sparsely gauged semi-arid region. Water resource changes over Hulun Lake region derived from monthly Gravity Recovery and Climate Experiment (GRACE) and Tropical Rainfall Measuring Mission (TRMM) products were analyzed. The Empirical Orthogonal Functions (EOF) analysis results from both GRACE and TRMM showed decreasing trends in water storage changes and precipitation over 2002 to 2007 and increasing trends after 2007 to 2012. Water storage and precipitation changes on the spatial and temporal scale showed a very consistent pattern. Further analysis proved that water storage changes were mainly caused by precipitation and temperature changes in this region. It is found that a large proportion of grassland vegetation recovered to its normal state after above average rainfall in the following years (2008?2012) and only a small proportion of grassland vegetation (16.5% of the study area) is degraded and failed to recover. These degraded grassland vegetation areas are categorized as ecologically vulnerable to climate change and protective strategies should be designed to prevent its further degradation.

 Artículos similares

       
 
Rossana Caroni, Monica Pinardi, Gary Free, Daniela Stroppiana, Lorenzo Parigi, Giulio Tellina, Mariano Bresciani, Clément Albergel and Claudia Giardino    
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Qiyan Li, Zhi Weng, Zhiqiang Zheng and Lixin Wang    
The decrease in lake area has garnered significant attention within the global ecological community, prompting extensive research in remote sensing and computer vision to accurately segment lake areas from satellite images. However, existing image segmen... ver más
Revista: Applied Sciences

 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences

 
Jiaming Bian, Ye Liu and Jun Chen    
In recent times, remote sensing image super-resolution reconstruction technology based on deep learning has experienced rapid development. However, most algorithms in this domain concentrate solely on enhancing the super-resolution network?s performance ... ver más
Revista: Applied Sciences