Inicio  /  Applied Sciences  /  Vol: 13 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

Attitude Control of Stabilized Platform Based on Deep Deterministic Policy Gradient with Disturbance Observer

Aiqing Huo    
Xue Jiang and Shuhan Zhang    

Resumen

A rotary steerable drilling system is an advanced drilling technology, with stabilized platform tool face attitude control being a critical component. Due to a multitude of downhole interference factors, coupled with nonlinearities and uncertainties, challenges arise in model establishment and attitude control. Furthermore, considering that stabilized platform tool face attitude determines the drilling direction of the entire drill bit, the effectiveness of tool face attitude control and nonlinear disturbances, such as friction interference, will directly impact the precision and success of drilling tool guidance. In this study, a mathematical model and a friction model of the stabilized platform are established, and a Disturbance-Observer-Based Deep Deterministic Policy Gradient (DDPG_DOB) control algorithm is proposed to address the friction nonlinearity problem existing in the rotary steering drilling stabilized platform. The numerical simulation results illustrate that the stabilized platform attitude control system based on DDPG_DOB can effectively suppress friction interference, improve non-linear hysteresis, and demonstrate strong anti-interference capability and good robustness.

 Artículos similares

       
 
Shilei Cao, Man Yang and Jian Liu    
Due to its advantages of easy deployment and high stiffness-to-mass ratio, the utilization of truss structures for constructing large satellites presents an appealing solution for modern space missions, including Earth observation and astronomy. However,... ver más
Revista: Aerospace

 
José Azinheira, Reginaldo Carvalho, Ely Paiva and Rafael Cordeiro    
This paper proposes a new kind of airship actuator configuration for surveillance and environmental monitoring missions. We present the design and application of a six-propeller electrical airship (Noamini) with independent tilting propellers, allowing i... ver más
Revista: Aerospace

 
Rong Li, Zhengliang Yang, Gaowei Yan, Long Jian, Guoqiang Li and Zhiqiang Li    
This paper uses the adaptive dynamic programming (ADP) method to achieve optimal trajectory tracking control for quadrotors. Relying on an established mathematical model of a quadrotor, the approximate optimal trajectory tracking control, which consists ... ver más
Revista: Aerospace

 
Soobin Jeon, Sang-Young Park and Geuk-Nam Kim    
CANYVAL-C is a formation-flying mission that demonstrates a coronagraph utilizing two CubeSats. The coronagraph is a space telescope that blocks sunlight to examine the overcast regions around the sun. It is composed of optical and occult segments. Two s... ver más
Revista: Aerospace

 
Yi Ye, Renliang Chen and Honglei Ji    
This paper presents an active flow control of ship airwake over the deck to improve the safety of helicopter shipboard operations in various angles of wind over deck (WOD). Firstly, an integrated flight dynamics method coupled with ship airwake was devel... ver más
Revista: Aerospace