ARTÍCULO
TITULO

An Improved VMD?EEMD?LSTM Time Series Hybrid Prediction Model for Sea Surface Height Derived from Satellite Altimetry Data

Hongkang Chen    
Tieding Lu    
Jiahui Huang    
Xiaoxing He and Xiwen Sun    

Resumen

Changes in sea level exhibit nonlinearity, nonstationarity, and multivariable characteristics, making traditional time series forecasting methods less effective in producing satisfactory results. To enhance the accuracy of sea level change predictions, this study introduced an improved variational mode decomposition and ensemble empirical mode decomposition?long short-term memory hybrid model (VMD?EEMD?LSTM). This model decomposes satellite altimetry data from near the Dutch coast using VMD, resulting in components of the intrinsic mode functions (IMFs) with various frequencies, along with a residual sequence. EEMD further dissects the residual sequence obtained from VMD into second-order components. These IMFs decomposed by VMD and EEMD are utilized as features in the LSTM model for making predictions, culminating in the final forecasted results. The experimental results, obtained through a comparative analysis of six sets of Dutch coastal sea surface height data, confirm the excellent accuracy of the hybrid model proposed (root mean square error (RMSE) = 47.2 mm, mean absolute error (MAE) = 33.3 mm, coefficient of determination (R2) = 0.9). Compared to the VMD-LSTM model, the average decrease in RMSE was 58.7%, the average reduction in MAE was 60.0%, and the average increase in R2 was 49.9%. In comparison to the EEMD-LSTM model, the average decrease in RMSE was 27.0%, the average decrease in MAE was 28.0%, and the average increase in R2 was 6.5%. The VMD?EEMD?LSTM model exhibited significantly improved predictive performance. The model proposed in this study demonstrates a notable enhancement in global mean sea lever (GMSL) forecasting accuracy during testing along the Dutch coast.

 Artículos similares

       
 
Yi?an Wang, Zhe Wu and Dong Ni    
Optimizing the heliostat field aiming strategy is crucial for maximizing thermal power production in solar power tower (SPT) plants while adhering to operational constraints. Although existing approaches can yield highly optimal solutions, their consider... ver más
Revista: Applied Sciences

 
Lin Ma, Fuheng Ma, Wenhan Cao, Benxing Lou, Xiang Luo, Qiang Li and Xiaoniao Hao    
A original strategy for optimizing the inversion of concrete dam parameters based on the multi-strategy improved Sooty Tern Optimization algorithm (MSSTOA) is proposed to address the issues of low efficiency, low accuracy, and poor optimizing performance... ver más
Revista: Water

 
Sharoon Saleem, Fawad Hussain and Naveed Khan Baloch    
Network on Chip (NoC) has emerged as a potential substitute for the communication model in modern computer systems with extensive integration. Among the numerous design challenges, application mapping on the NoC system poses one of the most complex and d... ver más
Revista: Algorithms

 
Marta Hervás, Fernando Martínez-Alzamora, Pilar Conejos and Joan Carles Alonso    
In this paper, several methods for the calculation of water quality evolution in drinking water distribution networks are analysed. The Lagrangian Time-Driven method has been implemented in the Epanet simulation software since version 2.0. In version 2.2... ver más
Revista: Water

 
Sta?a Pu?karic, Mateo Sokac, ?ivana Nincevic, Heliodor Prelesnik and Knut Yngve Børsheim    
In this communication, we present the prototype of a new simulated in situ lab/on-deck incubator, the light spectrum replicator (LSR), and a method for simulating the measured in situ HOCR light spectrum curves in incubation chambers. We developed this s... ver más