Resumen
A thorough understanding of the hydrologic mechanisms that control the movement of water through the soil is essential for developing effective stormwater management strategies. Infiltration is critical for determining the amount of water entering the soil and controlling surface runoff. Spatial and temporal variations in soil properties strongly affect infiltration rates, which underscores the importance of evaluating field-specific values for hydraulic conductivity, which are also highly dependent on the chosen measurement and evaluation methods. The objective of this study is to determine and compare soil hydraulic conductivity under dry conditions using two field measurement techniques, namely the double-ring infiltrometer (DRI) and the mini-disk infiltrometer (MDI). The results demonstrate the importance of performing multiple replicates of infiltration tests, especially during the dry season, as the initial dry surface caused deviations in hydraulic conductivity estimates for both methods used (DRI and MDI). Significant spatial variability was observed within the radius of the test replicates over short distances (<1 m). In addition, experimental infiltration curves for a selected site were used to evaluate and compare soil hydraulic parameters through infiltration modeling. In general, the Philip, Green-Ampt, and Smith-Parlange theoretical models showed a better fit to the experimental DRI data than the semi-empirical Horton model.