Inicio  /  Applied Sciences  /  Vol: 12 Par: 17 (2022)  /  Artículo
ARTÍCULO
TITULO

Multi-Scale Convolutional Network for Space-Based ADS-B Signal Separation with Single Antenna

Yan Bi and Chuankun Li    

Resumen

Automatic Dependent Surveillance-Broadcast (ADS-B) signals are very vital in air traffic control. However, the space-based ADS-B signals are easily overlapped and their message cannot be correctly received. It is challenge to separate overlapped signals especially for a single antenna. The existing methods have a low decoding accuracy for small power difference, carrier frequency difference and relative time delay between overlapped signals. In order to solve these problems, we apply the deep learning method to single antenna ADS-B signal separation. A multi-scale Conv-TasNet (MConv-TasNet) is proposed to capture long temporal information of the ADS-B signal. In MConv-TasNet, a multi-scale convolutional separation (MCS) network is proposed to fuse different scale temporal features extracted from overlapping ADS-B signals and generate an effective separation mask to separate signals. Moreover, a large dataset is created by using the real ADS-B data. In addition, the proposed method has been evaluated on the dataset. The average decoding accuracy on the test set is 90.34%. It has achieved the state-of-the-art results.

 Artículos similares

       
 
Yunhan Geng, Shaojuan Su, Tianxiang Zhang and Zhaoyu Zhu    
Centrifugal pumps are susceptible to various faults, particularly under challenging conditions such as high pressure. Swift and accurate fault diagnosis is crucial for enhancing the reliability and safety of mechanical equipment. However, monitoring data... ver más

 
Gianmarco Baldini    
Cybersecurity in modern vehicles has received increased attention from the research community in recent years. Intrusion Detection Systems (IDSs) are one of the techniques used to detect and mitigate cybersecurity risks. This paper proposes a novel imple... ver más
Revista: Information

 
Zifan Rong, Xuesong Jiang, Linfeng Huang and Hongping Zhou    
Pan-sharpening aims to create high-resolution spectrum images by fusing low-resolution hyperspectral (HS) images with high-resolution panchromatic (PAN) images. Inspired by the Swin transformer used in image classification tasks, this research constructs... ver más
Revista: Applied Sciences

 
Li Zou, Haowen Cheng and Qianhui Sun    
Wind turbine blades are readily damaged by the workplace environment and frequently experience flaws such as surface peeling and cracking. To address the problems of cumbersome operation, high cost, and harsh application conditions with traditional damag... ver más
Revista: Applied Sciences

 
Jingjing Liu, Xinli Yang, Denghui Zhang, Ping Xu, Zhuolin Li and Fengjun Hu    
Multi-node wind speed forecasting is greatly important for offshore wind power. It is a challenging task due to unknown complex spatial dependencies. Recently, graph neural networks (GNN) have been applied to wind forecasting because of their capability ... ver más