Inicio  /  Water  /  Vol: 10 Par: 4 (2018)  /  Artículo
ARTÍCULO
TITULO

Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai-Tibet Plateau

Jun Liu    
Donghui Shanguan    
Shiyin Liu and Yongjian Ding    

Resumen

Multisource reanalysis datasets provide an effective way to help us understand hydrological processes in inland alpine regions with sparsely distributed weather stations. The accuracy and quality of two widely used datasets, the China Meteorological Assimilation Driving Datasets to force the SWAT model (CMADS), and the Climate Forecast System Reanalysis (CFSR) in the Qinghai-Tibet Plateau (TP), were evaluated in this paper. The accuracy of daily precipitation, max/min temperature, relative humidity and wind speed from CMADS and CFSR are firstly evaluated by comparing them with results obtained from 131 meteorological stations in the TP. Statistical results show that most elements of CMADS are superior to those of CFSR. The average correlation coefficient (R) between the maximum temperature and the minimum temperature of CMADS and CFSR ranged from 0.93 to 0.97. The root mean square error (RMSE) for CMADS and CFSR ranged from 3.16 to 3.18 °C, and ranged from 5.19 °C to 8.14 °C respectively. The average R of precipitation, relative humidity, and wind speed for CMADS are 0.46; 0.88 and 0.64 respectively, while they are 0.43, 0.52, and 0.37 for CFSR. Gridded observation data is obtained using the professional interpolation software, ANUSPLIN. Meteorological elements from three gridded data have a similar overall distribution but have a different partial distribution. The Soil and Water Assessment Tool (SWAT) is used to simulate hydrological processes in the Yellow River Source Basin of the TP. The Nash Sutcliffe coefficients (NSE) of CMADS+SWAT in calibration and validation period are 0.78 and 0.68 for the monthly scale respectively, which are better than those of CFSR+SWAT and OBS+SWAT in the Yellow River Source Basin. The relationship between snowmelt and other variables is measured by GeoDetector. Air temperature, soil moisture, and soil temperature at 1.038 m has a greater influence on snowmelt than others.

Palabras claves

 Artículos similares

       
 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Ali Uzunlar and Muhammet Omer Dis    
The hydrological cycle should be scrutinized and investigated under recent climate change scenarios to ensure global water management and to increase its utilization. Although the FAO proposed the use of the Penman?Monteith (PM) equation worldwide to pre... ver más
Revista: Water

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water