Inicio  /  Algorithms  /  Vol: 13 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

From Trees to Barcodes and Back Again: Theoretical and Statistical Perspectives

Lida Kanari    
Adélie Garin and Kathryn Hess    

Resumen

Methods of topological data analysis have been successfully applied in a wide range of fields to provide useful summaries of the structure of complex data sets in terms of topological descriptors, such as persistence diagrams. While there are many powerful techniques for computing topological descriptors, the inverse problem, i.e., recovering the input data from topological descriptors, has proved to be challenging. In this article, we study in detail the Topological Morphology Descriptor (TMD), which assigns a persistence diagram to any tree embedded in Euclidean space, and a sort of stochastic inverse to the TMD, the Topological Neuron Synthesis (TNS) algorithm, gaining both theoretical and computational insights into the relation between the two. We propose a new approach to classify barcodes using symmetric groups, which provides a concrete language to formulate our results. We investigate to what extent the TNS recovers a geometric tree from its TMD and describe the effect of different types of noise on the process of tree generation from persistence diagrams. We prove moreover that the TNS algorithm is stable with respect to specific types of noise.

 Artículos similares

       
 
Grace-Mercure Bakanina Kissanga, Hasan Zulfiqar, Shenghan Gao, Sophyani Banaamwini Yussif, Biffon Manyura Momanyi, Lin Ning, Hao Lin and Cheng-Bing Huang    
Accurate prediction of subcellular localization of viral proteins is crucial for understanding their functions and developing effective antiviral drugs. However, this task poses a significant challenge, especially when relying on expensive and time-consu... ver más
Revista: Information

 
Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro    
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processin... ver más
Revista: Algorithms

 
Nyo Me Htun, Toshiaki Owari, Satoshi Tsuyuki and Takuya Hiroshima    
High-value timber species with economic and ecological importance are usually distributed at very low densities, such that accurate knowledge of the location of these trees within a forest is critical for forest management practices. Recent technological... ver más
Revista: Algorithms

 
Nirmal Acharya, Padmaja Kar, Mustafa Ally and Jeffrey Soar    
Significant clinical overlap exists between mental health and substance use disorders, especially among women. The purpose of this research is to leverage an AutoML (Automated Machine Learning) interface to predict and distinguish co-occurring mental hea... ver más
Revista: Applied Sciences

 
AlsharifHasan Mohamad Aburbeian and Manuel Fernández-Veiga    
Securing online financial transactions has become a critical concern in an era where financial services are becoming more and more digital. The transition to digital platforms for conducting daily transactions exposed customers to possible risks from cyb... ver más
Revista: AI