Inicio  /  Algorithms  /  Vol: 13 Par: 3 (2020)  /  Artículo
ARTÍCULO
TITULO

GeoAI: A Model-Agnostic Meta-Ensemble Zero-Shot Learning Method for Hyperspectral Image Analysis and Classification

Konstantinos Demertzis and Lazaros Iliadis    

Resumen

Deep learning architectures are the most effective methods for analyzing and classifying Ultra-Spectral Images (USI). However, effective training of a Deep Learning (DL) gradient classifier aiming to achieve high classification accuracy, is extremely costly and time-consuming. It requires huge datasets with hundreds or thousands of labeled specimens from expert scientists. This research exploits the MAML++ algorithm in order to introduce the Model-Agnostic Meta-Ensemble Zero-shot Learning (MAME-ZsL) approach. The MAME-ZsL overcomes the above difficulties, and it can be used as a powerful model to perform Hyperspectral Image Analysis (HIA). It is a novel optimization-based Meta-Ensemble Learning architecture, following a Zero-shot Learning (ZsL) prototype. To the best of our knowledge it is introduced to the literature for the first time. It facilitates learning of specialized techniques for the extraction of user-mediated representations, in complex Deep Learning architectures. Moreover, it leverages the use of first and second-order derivatives as pre-training methods. It enhances learning of features which do not cause issues of exploding or diminishing gradients; thus, it avoids potential overfitting. Moreover, it significantly reduces computational cost and training time, and it offers an improved training stability, high generalization performance and remarkable classification accuracy.

 Artículos similares

       
 
Mondher Bouazizi, Chuheng Zheng, Siyuan Yang and Tomoaki Ohtsuki    
A growing focus among scientists has been on researching the techniques of automatic detection of dementia that can be applied to the speech samples of individuals with dementia. Leveraging the rapid advancements in Deep Learning (DL) and Natural Languag... ver más
Revista: Information

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences