ARTÍCULO
TITULO

Prediction of Urban Sprawl by Integrating Socioeconomic Factors in the Batticaloa Municipal Council, Sri Lanka

Mathanraj Seevarethnam    
Noradila Rusli and Gabriel Hoh Teck Ling    

Resumen

Due to extensive population growth, urbanization increases urban development and sprawl in the world?s cities. Urban sprawl is a socioeconomic phenomenon that has not extensively incorporated socioeconomic factors in the prediction of most of the urban sprawl models. This study aimed to predict the urban sprawl pattern in 2030 by integrating socioeconomic and biophysical factors. NDBI, Cramer?s V, logistic regression, and CA-Markov analyses were used to classify and predict built-up patterns. The built-up area is the dominant land use, which had a gradual growth from 1990 to 2020. A total of 20 socioeconomic and biophysical factors were identified as potentials in the municipality, affecting the urban sprawl. Policy regulation was the most attractive driver with a positive association, and land value had a high inverse association. Three prediction scenarios for urban sprawl were achieved for 2030. Higher sprawling growth is expected in scenario 3, compared with scenarios 1 and 2. Scenario 3 was simulated with biophysical and socioeconomic factors. This study aids in addressing urban sprawl at different spatial and temporal scales and helps urban planners and decision makers enhance the development strategies in the municipality. Predicted maps with different scenarios can support evaluating future sprawling growth and be used to develop sustainable planning for the city.

 Artículos similares

       
 
Andreas F. Gkontzis, Sotiris Kotsiantis, Georgios Feretzakis and Vassilios S. Verykios    
Smart cities, leveraging advanced data analytics, predictive models, and digital twin techniques, offer a transformative model for sustainable urban development. Predictive analytics is critical to proactive planning, enabling cities to adapt to evolving... ver más
Revista: Future Internet

 
Jian Chen, Yaowei Li and Shanju Zhang    
Rapid prediction of urban flooding is an important measure to reduce the risk of flooding and to protect people?s property. In order to meet the needs of emergency flood control, this paper constructs a rapid urban flood prediction model based on a machi... ver más
Revista: Water

 
Sadeq Khaleefah Hanoon, Ahmad Fikri Abdullah, Helmi Z. M. Shafri and Aimrun Wayayok    
Land use and land cover changes driven by urban sprawl has accelerated the degradation of ecosystem services in metropolitan settlements. However, most optimisation techniques do not consider the dynamic effect of urban sprawl on the spatial criteria on ... ver más

 
Kunkun Fan, Daichao Li, Cong Li, Xinlei Jin, Fei Ding and Zhan Zeng    
Analyzing the influencing factors of PM2.5 concentration, scenario simulations, and countermeasure research to address the problem of PM2.5 pollution in Guangdong Province is of great significance for governments at all levels for formulating relevant po... ver más

 
Jiaqi Zhao, Baiyi Zong and Ling Wu    
Based on a study of the spatial distribution of coffee shops in the main urban area of Beijing, the main influencing factors were selected based on the multi-source space data. Subsequently, three regression models were compared, and the best site select... ver más