ARTÍCULO
TITULO

An Underwater Acoustic Target Recognition Method Based on Spectrograms with Different Resolutions

Xinwei Luo    
Minghong Zhang    
Ting Liu    
Ming Huang and Xiaogang Xu    

Resumen

This paper focuses on the automatic target recognition (ATR) method based on ship-radiated noise and proposes an underwater acoustic target recognition (UATR) method based on ResNet. In the proposed method, a multi-window spectral analysis (MWSA) method is used to solve the difficulty that the traditional time?frequency (T?F) analysis method has in extracting multiple signal characteristics simultaneously. MWSA generates spectrograms with different T?F resolutions through multiple window processing to provide input for the classifier. Because of the insufficient number of ship-radiated noise samples, a conditional deep convolutional generative adversarial network (cDCGAN) model was designed for high-quality data augmentation. Experimental results on real ship-radiated noise show that the proposed UATR method has good classification performance.

 Artículos similares

       
 
Peizhen Zhang, Xiaofeng Yin, Bin Wang and Ziyi Feng    
The construction of wind farm pilings, submarine pipelines, and underwater submarines involves multiple cylinders. However, there is currently a lack of economic research on predicting the mechanism and characteristics of mutual coupling of acoustic scat... ver más

 
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más

 
Haiyang Yao, Tian Gao, Yong Wang, Haiyan Wang and Xiao Chen    
To overcome the challenges of inadequate representation and ineffective information exchange stemming from feature homogenization in underwater acoustic target recognition, we introduce a hybrid network named Mobile_ViT, which synergizes MobileNet and Tr... ver más

 
Jing Li, Jin Fu and Nan Zou    
The underwater channel is bilateral, heterogeneous, uncertain, and exhibits multipath transmission, sound line curvature, etc. These properties complicate the structure of the received pulse, causing great challenges in direct signal identification for r... ver más

 
Jessica J. Sportelli, Kelly M. Heimann and Brittany L. Jones    
Bottlenose dolphins (Tursiops truncatus) rely on frequency- and amplitude-modulated whistles to communicate, and noise exposure can inhibit the success of acoustic communication through masking or causing behavioral changes in the animal. At the US Navy ... ver más