Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Influencing Factors Analysis of Crude Oil Futures Price Volatility Based on Mixed-Frequency Data

Congxin Wu    
Xinyu Wang    
Shan Luo    
Jing Shan and Feng Wang    

Resumen

This article takes into account the form of mixed data as well as the peak and thick tail characteristics contained in the data characteristics, expands the GARCH-MIDAS (Generalized Autoregressive Conditional Heteroskedasticity-Mixed Data Sampling) model, establishes a new GARCH-MIDAS model with the residual term of the skewed-t distribution, and analyzes the influence factors of crude oil futures price volatility, which can better explain the changing laws of crude oil price volatility. The results show the following: First, the low-frequency factors include crude oil production, consumption, inventory, and natural gas spot price, and the high-frequency factors include on-market trading volume and off-market spot price, which can significantly explain the volatility of oil price. Second, low-frequency factors include crude oil inventory, consumption, crude oil production, and speculative factors, and high-frequency factors include crude oil spot price and substitute prices. The increase in the volatility of trading volume is significantly positively correlated with oil price volatility, and the overall volatility model outperforms the horizontal effect model. Third, from the perspective of the combined effect of a single factor level and volatility, we find that supply and demand are the low-frequency factors; the trading volume of on-market factors, natural gas price, and crude oil spot price of off-market factors, among the high-frequency factors, are the most important factors affecting oil price volatility. Fourth, from the perspective of high-frequency and low-frequency effects combined, there is no significant difference between the various factor models, which shows that the mixed effect model of high and low frequency models has advantages in terms of the stability of the estimation results.

 Artículos similares

       
 
Zihan Gui, Heshuai Qi, Faliang Gui, Baoxian Zheng, Shiwu Wang and Hua Bai    
Poyang Lake, the largest freshwater lake in China, is an important regional water resource and a landmark ecosystem. In recent years, it has experienced a period of prolonged drought. Using appropriate drought indices to describe the drought characterist... ver más
Revista: Water

 
Haoran Zhu, Liping Zhu, Lun Luo and Jiao Li    
Based on 360 event-based precipitation samples collected at six stations on the North Tibetan Plateau (NTP) in 2019?2020, we analyzed the influence of meteorological parameters, sub-cloud evaporation, moisture sources, and moisture transmission pathways ... ver más
Revista: Water

 
Muhammad Wisal Khattak, Hans De Backer, Pieter De Winne, Tom Brijs and Ali Pirdavani    
Revista: Infrastructures

 
Zhaoyue Ma, Yong Zhao, Wenjing Zhao, Jiajun Feng, Yingying Liu, Jin Yeu Tsou and Yuanzhi Zhang    
This study on total suspended matter (TSM) in the Pearl River Estuary established a regression analysis model using Landsat 8 reflectance and measured TSM data, crucial for environmental management and engineering projects. High coefficients of determina... ver más

 
He Lan and Xiaoxue Ma    
Seafarers? unsafe acts as the direct causes of maritime accidents are considered to be the result of the interaction between complex and dynamic influencing factors. Identifying the risk evolution characteristics and paths of seafarers? unsafe acts has a... ver más
Revista: Applied Sciences