Inicio  /  Applied Sciences  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Fast State-of-Charge-Balancing Strategy for Distributed Energy Storage Units Interfacing with DC?DC Boost Converters

Minghang Duan    
Jiandong Duan    
Quntao An and Li Sun    

Resumen

State-of-charge balance is vital for allowing multiple energy storage units (ESUs) to make the most of stored energy and ensure safe operation. Concerning scenarios wherein boost converters are used as the interfaces between ESUs and loads, this paper proposes a balancing strategy for realizing consistent state-of-charge (SoC) levels and equal currents among different ESUs. This strategy is valid for both parallel and series applications. Its advantages also include its high precision of SoC equalization without extra sensors and fast convergence. A common outer voltage loop is used to accomplish tight voltage regulation, while multiple inner current loops are utilized to achieve current control and SoC balance simultaneously. Firstly, by introducing SoC-based current distribution ratios (CDRs) to modify current references online, the currents are gradually adjusted to eliminate SoC deviations. Secondly, to expedite the balancing process, current saturations are further adopted. Thirdly, the influences of accelerating factor and current limits in CDR expressions are analyzed, and their selection guidelines are subsequently provided. Fourthly, the controller design, consisting of a dual loop, is illustrated to guarantee sufficient stability margins. Fifthly, an experimental platform consisting of three battery ESUs is developed to verify the proposed strategy.

 Artículos similares

       
 
Daniel Jerouschek, Ömer Tan, Ralph Kennel and Ahmet Taskiran    
Voltage models of lithium-ion batteries (LIB) are used to estimate their future voltages, based on the assumption of a specific current profile, in order to ensure that the LIB remains in a safe operation mode. Data of measurable physical features?curren... ver más
Revista: Applied Sciences

 
Minella Bezha, Makoto Ishii, Takahiro Shoda, Yuki Hoshide and Naoto Nagaoka    
In this study, a scaled-down system, which can be used as a benchmark test for the battery storage designing of electric vehicles (EVs) is proposed. This model was based on the hardware simulator of the battery storage system (BSS) used from a single cel... ver más