|
|
|
Hao An, Ruotong Ma, Yuhan Yan, Tailai Chen, Yuchen Zhao, Pan Li, Jifeng Li, Xinyue Wang, Dongchen Fan and Chunli Lv
This paper aims to address the increasingly severe security threats in financial systems by proposing a novel financial attack detection model, Finsformer. This model integrates the advanced Transformer architecture with the innovative cluster-attention ...
ver más
|
|
|
|
|
|
Yue Zha, Yuanzhi Ke, Xiao Hu and Caiquan Xiong
Named entity recognition (NER) is particularly challenging for medical texts due to the high domain specificity, abundance of technical terms, and sparsity of data in this field. In this work, we propose a novel attention layer, called the ?ontology atte...
ver más
|
|
|
|
|
|
Rongsheng Li, Jin Xu, Zhixiong Cao, Hai-Tao Zheng and Hong-Gee Kim
In the realm of large language models (LLMs), extending the context window for long text processing is crucial for enhancing performance. This paper introduces SBA-RoPE (Segmented Base Adjustment for Rotary Position Embeddings), a novel approach designed...
ver más
|
|
|
|
|
|
Mengping Huang, Shuai Ma, Jinrong He, Wei Xue, Xueyan Hou, Yuqi Zhang, Xiaofeng Liu, Heping Bai and Ran Li
Amino acids found in minor coarse cereals are essential for human growth and development and play a crucial role in efficient and rapid quantitative detection. Surface-enhanced Raman spectroscopy (SERS) enables nondestructive, efficient, and rapid sample...
ver más
|
|
|
|
|
|
MohammadHossein Reshadi, Wen Li, Wenjie Xu, Precious Omashor, Albert Dinh, Scott Dick, Yuntong She and Michael Lipsett
Anomaly detection in data streams (and particularly time series) is today a vitally important task. Machine learning algorithms are a common design for achieving this goal. In particular, deep learning has, in the last decade, proven to be substantially ...
ver más
|
|
|