Resumen
In December 2019, the coronavirus disease 2019 (COVID-19) pandemic attacked Wuhan, China. The city government soon strictly locked down the city, implemented a hierarchical diagnosis and treatment system, and took a series of unprecedented pharmaceutical and non-pharmaceutical measures. The residents? access to the medical resources and the consequently potential demand?supply tension may determine effective diagnosis and treatment, for which travel distance and time are key indicators. Using the Application Programming Interface (API) of Baidu Map, we estimated the travel distance and time from communities to the medical facilities capable of treating COVID-19 patients, and we identified the service areas of those facilities as well. The results showed significant differences in service areas and potential loading across medical facilities. The accessibility of medical facilities in the peripheral areas was inferior to those in the central areas; there was spatial inequality of medical resources within and across districts; the amount of community healthcare centers was insufficient; some communities were underserved regarding walking distance; some medical facilities could be potentially overloaded. This study provides reference, in the context of Wuhan, for understanding the spatial aspect of medical resources and residents? relevant mobility under the emergency regulation, and re-examining the coordination of emergency to improve future planning and utilization of medical facilities at various levels. The approach can facilitate policymakers to assess potential loading of medical facilities, identify low-accessibility areas, and deploy new medical facilities. It also implies that the accessibility analysis can be rapid and relevant even only with open-source data.