Inicio  /  Applied Sciences  /  Vol: 10 Par: 1 (2020)  /  Artículo
ARTÍCULO
TITULO

A Novel Intelligent Method for Bearing Fault Diagnosis Based on EEMD Permutation Entropy and GG Clustering

Jingbao Hou    
Yunxin Wu    
Hai Gong    
A. S. Ahmad and Lei Liu    

Resumen

For a rolling bearing fault that has nonlinearity and nonstationary characteristics, it is difficult to identify the fault category. A rolling bearing clustering fault diagnosis method based on ensemble empirical mode decomposition (EEMD), permutation entropy (PE), linear discriminant analysis (LDA), and the Gath?Geva (GG) clustering algorithm is proposed. Firstly, we decompose the vibration signal using EEMD, and several inherent modal components are obtained. Then, the permutation entropy values of each modal component are calculated to get the entropy feature vector, and the entropy feature vector is reduced by the LDA method to be used as the input of the clustering algorithm. The data experiments show that the proposed fault diagnosis method can obtain satisfactory clustering indicators. It implies that compared with other mode combination methods, the fault identification method proposed in this study has the advantage of better intra-class compactness of clustering results.

 Artículos similares

       
 
Luis A. Fletscher, Alejandra Zuleta, Alexander Galvis, David Quintero, Juan Felipe Botero and Natalia Gaviria    
While 5G has become a reality in several places around the world, some countries are still in the process of assigning frequency bands and deploying networks. In this context, there is a significant opportunity to explore new market models for the manage... ver más
Revista: Information

 
Zhiguo Liang, Lijun Zhang and Xizhe Wang    
Since failure of steam turbines occurs frequently and can causes huge losses for thermal plants, it is important to identify a fault in advance. A novel clustering fault diagnosis method for steam turbines based on t-distribution stochastic neighborhood ... ver más
Revista: Algorithms

 
Yingdong Ye, Rong Zhen, Zheping Shao, Jiacai Pan and Yubing Lin    
The intelligent perception ability of the close-range navigation environment is the basis of autonomous decision-making and control of unmanned ships. In order to realize real-time perception of the close-range environment of unmanned ships, an enhanced ... ver más

 
Rong Zhen, Yingdong Ye, Xinqiang Chen and Liangkun Xu    
Aiming at the problem of high-precision detection of AtoN (Aids to Navigation, AtoN) in the complex inland river environment, in the absence of sufficient AtoN image types to train classifiers, this paper proposes an automatic AtoN detection algorithm Ai... ver más

 
Yunhan Geng, Shaojuan Su, Tianxiang Zhang and Zhaoyu Zhu    
Centrifugal pumps are susceptible to various faults, particularly under challenging conditions such as high pressure. Swift and accurate fault diagnosis is crucial for enhancing the reliability and safety of mechanical equipment. However, monitoring data... ver más