Inicio  /  Applied Sciences  /  Vol: 12 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Parametric and Experimental Modeling of Axial-Type Piezoelectric Energy Generator with Active Base

Alexander V. Cherpakov    
Ivan A. Parinov and Rakesh Kumar Haldkar    

Resumen

A computational and experimental approach to modeling oscillations of a new axial-type piezoelectric generator (PEG) with an attached mass and an active base is considered. A pair of cylindrical piezoelements located along the generator axis is used as an active base. Plate-type piezoelectric elements, made in the form of two bimorphs on an elastic PEG base, use the potential energy of PEG bending vibrations. Energy generation in cylindrical piezoelectric elements occurs due to the transfer of compressive forces to the piezoelectric element at the base of the PEG during excitation of structural vibrations. The active load scheme is selected separately for each piezoelectric element. Numerical simulation was performed in the ANSYS FE analysis package. The results of modal and harmonic analysis of vibrations are presented. A technique for experimental analysis of vibrations is presented, and a laboratory test setup is described. Numerical and experimental results are presented for the output characteristics of a piezoelectric generator at a low-frequency load. For one of the versions of the generator and a certain displacement amplitude for a frequency of 39 Hz, in the results of a comparative experimental analysis at a load of 10 kO, the maximum output power for each cylindrical piezoelectric element was 2138.9 µW, and for plate-type piezoelectric elements, respectively, 446.9 µW and 423.2 µW.

 Artículos similares

       
 
Bin Jia, Qing Wang, Lei Ju, Chenjun Hu, Rongsheng Zhao, Duanfeng Han and Fuzhen Pang    
The vertical ice breaking of marine structures in ice-covered areas involves the deformation and failure of an ice sheet. Different from the existing conventional scenarios where the ice sheet is used as a transportation and support medium, the damage to... ver más

 
Jozef Gocál, Josef Vican, Jaroslav Odrobinák, Richard Hlinka, Franti?ek Bahleda and Agnieszka Wdowiak-Postulak    
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These... ver más
Revista: Applied Sciences

 
Alejandro Regalado-Méndez, Guadalupe Ramos-Hernández, Reyna Natividad, Mario E. Cordero, Luis Zárate, Edson E. Robles-Gómez, Hugo Pérez-Pastenes and Ever Peralta-Reyes    
2-Chlorophenol (2-CP) is a dangerous organic contaminant found in wastewater. In this work, 2.5 L of a 2-CP solution (1 mol/m3) was electrochemically treated in a flow-by reactor equipped with two boron-doped diamond electrodes (BDD) under batch recircul... ver más
Revista: Water

 
Ángel Antonio Rodríguez-Sevillano, María Jesús Casati-Calzada, Rafael Bardera-Mora, Javier Nieto-Centenero, Juan Carlos Matías-García and Estela Barroso-Barderas    
This paper shows a series of tools that help in the research of morphing micro air vehicles (MAVs). These tools are aimed at generating parametric CAD models of wings in a few seconds that can be used in aerodynamic studies, either via CFD directly using... ver más
Revista: Aerospace

 
Gui Cheng, Tianrui Ma, Jun Yang, Nan Chang and Xiang Zhou    
Morphing trailing edge wing as an important morphing wing technology has gained wide attention because of its advantages, such as gust mitigation, improved aerodynamic efficiency, and reduced radar reflective area. However, the key problems such as low l... ver más
Revista: Aerospace