ARTÍCULO
TITULO

Specification of the Okadaic Acid Equivalent for Okadaic Acid, Dinophysistoxin-1, and Dinophysistoxin-2 Based on Protein Phosphatase 2A Inhibition and Cytotoxicity Assays Using Neuro 2A Cell Line

Tsuyoshi Ikehara    
Kazuya Chikanishi and Naomasa Oshiro    

Resumen

Diarrhetic shellfish poisoning (DSP) is a globally occurring disease threatening public health and trade. The causative toxins, okadaic acid (OA), dinophysistoxin-1 (DTX1), and dinophysistoxin-2 (DTX2) are collectively called OAs, and are quantified using the LC-MS/MS method. The hazardous effect of total OAs is expressed as the sum of OA equivalents defined for respective OAs based on mouse lethality, produced by either intraperitoneal (OAip) or oral administration (OAor). OAs are potent inhibitors of protein phosphatase 2A (PP2A) and are cytotoxic, necessitating expansion of the concept of OA equivalents to all relevant bioactivities. In this study, we determined OA equivalents for respective OA members in PP2A inhibition and cytotoxicity assays. To secure result credibility, we used certified OAs, reference materials, and PP2A produced using genetic engineering. The relative ratio of the OA equivalents determined by PP2A inhibition assays for OA, DTX1, and DTX2 were 1.0:1.6:0.3, while the ratio determined using the cytotoxicity assays indicated 1.0:1.5:0.5. OA equivalents showed a similar tendency in the PP2A inhibition and cytotoxicity assays, and matched better with oral toxicity data than intraperitoneal toxicity in mice. The PP2A inhibition assay, which measures the core activity of the OAs, suggested a higher OA equivalent for DTX1 than that currently used.