Resumen
Traditional Micro-Aerial Vehicles (MAVs) are usually equipped with a low-cost Inertial Measurement Unit (IMU) and monocular cameras, how to achieve high precision and high reliability navigation under the framework of low computational complexity is the main problem for MAVs. To this end, a novel semi-direct point-line visual inertial odometry (SDPL-VIO) has been proposed for MAVs. In the front-end, point and line features are introduced to enhance image constraints and increase environmental adaptability. At the same time, the semi-direct method combined with IMU pre-integration is used to complete motion estimation. This hybrid strategy combines the accuracy and loop closure detection performance of the feature-based method with the rapidity of the direct method, and tracks keyframes and non-keyframes, respectively. In the back-end, the sliding window mechanism is adopted to limit the computation, while the improved marginalization method is used to decompose the high-dimensional matrix corresponding to the cost function to reduce the computational complexity in the optimization process. The comparison results in the EuRoC datasets demonstrate that SDPL-VIO performs better than the other state-of-the-art visual inertial odometry (VIO) methods, especially in terms of accuracy and real-time performance.