Resumen
In energy-constrained wireless sensor networks, low energy utilization and unbalanced energy distribution are seriously affecting the operation of the network. Therefore, efficient and reasonable routing algorithms are needed to achieve higher Quality of Service (QoS). For the Dempster?Shafer (DS) evidence theory, it can fuse multiple attributes of sensor nodes with reasonable theoretical deduction and has low demand for prior knowledge. Based on the above, we propose an energy efficient and reliable routing algorithm based on DS evidence theory (DS-EERA). First, DS-EERA establishes three attribute indexes as the evidence under considering the neighboring nodes? residual energy, traffic, the closeness of its path to the shortest path, etc. Then we adopt the entropy weight method to objectively determine the weight of three indexes. After establishing the basic probability assignment (BPA) function, the fusion rule of DS evidence theory is applied to fuse the BPA function of each index value to select the next hop. Finally, each node in the network transmits data through this routing strategy. Theoretical analysis and simulation results show that DS-EERA is promising, which can effectively prolong the network lifetime. Meanwhile, it can also reach a lower packet loss rate and improve the reliability of data transmission.