Resumen
This paper presents the hydrological analysis and grain size characteristics of fluvial sediments in a river basin and their combination to characterize a flood event. The overall objective of the research is the development of a practical methodology based on experimental surveys to reconstruct the hydraulic history of ungauged river reaches on the basis of the modifications detected on the riverbed during the dry season. The grain size analysis of fluvial deposits usually requires great technical and economical efforts and traditional sieving based on physical sampling is not appropriate to adequately represent the spatial distribution of sediments in a wide area of a riverbed with a reasonable number of samples. The use of photographic sampling techniques, on the other hand, allows for the quick and effective determination of the grain size distribution, through the use of a digital camera and specific graphical algorithms in large river stretches. A photographic sampling is employed to characterize the riverbed in a 3 km ungauged reach of the Tescio River, a tributary of the Chiascio River, located in central Italy, representative of many rivers in the same geographical area. To this end, the particle size distribution is reconstructed through the analysis of digital pictures of the sediments taken on the riverbed in dry conditions. The sampling has been performed after a flood event of known duration, which allows for the identification of the removal of the armor in one section along the river reach under investigation. The volume and composition of the eroded sediments made it possible to calculate the average flow rate associated with the flood event which caused the erosion, by means of the sediment transport laws and the hydrological analysis of the river basin. A hydraulic analysis of the river stretch under investigation was employed to verify the validity of the proposed procedure.