Inicio  /  Applied Sciences  /  Vol: 10 Par: 5 (2020)  /  Artículo
ARTÍCULO
TITULO

Detection Performance Regarding Sleep Apnea-Hypopnea Episodes with Fuzzy Logic Fusion on Single-Channel Airflow Indexes

Ming-Feng Wu    
Wei-Chang Huang    
Kai-Ming Chang    
Po-Chun Lin    
Chi-Hsuan Kuo    
Cheng-Wei Hsu and Tsu-Wang Shen    

Resumen

Obstructive sleep apnea-hypopnea syndrome (OSAHS) affects more than 936 million people worldwide and is the most common sleep-related breathing disorder; almost 80% of potential patients remain undiagnosed. To treat moderate to severe OSAHS as early as possible, the use of fewer sensing channels is recommended to screen for OSAHS and shorten waiting lists for the gold standard polysomnography (PSG). Hence, an effective out-of-clinic detection method may provide a solution to hospital overburden and associated health care costs. Applying single-channel signals to simultaneously detect apnea and hypopnea remains challenging. Among the various physiological signals used for sleep apnea-hypopnea detection, respiratory signals are relatively easy to apply. In this study, a fusion method using fuzzy logic and two single-channel respiratory indexes was proposed. A total of 12,391 apnea or hypopnea episodes were included. The proposed algorithm successfully fused standard deviation of airflow signals (SDA) and amplitude changes of peaks (ACP) indexes to detect apnea-hypopnea events, with overall sensitivity of 74%, specificity of 100%, and accuracy of 80% for mild to moderate OSAHS. For different apnea-hypopnea severity levels, the results indicated that the algorithm is superior to other methods; it also provides risk scores as percentages, which are especially accurate for mild hypopnea. The algorithm may provide rapid screening for early diagnosis and treatment.

 Artículos similares

       
 
Ru Ye, Hongyan Xing and Xing Zhou    
Addressing the limitations of manually extracting features from small maritime target signals, this paper explores Markov transition fields and convolutional neural networks, proposing a detection method for small targets based on an improved Markov tran... ver más

 
Yuhuan Wu and Yonghong Wu    
Salient object detection (SOD) aims to identify the most visually striking objects in a scene, simulating the function of the biological visual attention system. The attention mechanism in deep learning is commonly used as an enhancement strategy which e... ver más
Revista: Algorithms

 
Marya Butt, Nick Glas, Jaimy Monsuur, Ruben Stoop and Ander de Keijzer    
Scoring targets in shooting sports is a crucial and time-consuming task that relies on manually counting bullet holes. This paper introduces an automatic score detection model using object detection techniques. The study contributes to the field of compu... ver más
Revista: AI

 
Yussuf Ahmed, Muhammad Ajmal Azad and Taufiq Asyhari    
In recent years, there has been a notable surge in both the complexity and volume of targeted cyber attacks, largely due to heightened vulnerabilities in widely adopted technologies. The Prediction and detection of early attacks are vital to mitigating p... ver más
Revista: Information

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures