Resumen
The interdisciplinary nature of sports and the presence of various systemic and non-systemic factors introduce challenges in predicting sports match outcomes using a single disciplinary approach. In contrast to previous studies that use sports performance metrics and statistical models, this study is the first to apply a deep learning approach in financial time series modeling to predict sports match outcomes. The proposed approach has two main components: a convolutional neural network (CNN) classifier for implicit pattern recognition and a logistic regression model for match outcome judgment. First, the raw data used in the prediction are derived from the betting market odds and actual scores of each game, which are transformed into sports candlesticks. Second, CNN is used to classify the candlesticks time series on a graphical basis. To this end, the original 1D time series are encoded into 2D matrix images using Gramian angular field and are then fed into the CNN classifier. In this way, the winning probability of each matchup team can be derived based on historically implied behavioral patterns. Third, to further consider the differences between strong and weak teams, the CNN classifier adjusts the probability of winning the match by using the logistic regression model and then makes a final judgment regarding the match outcome. We empirically test this approach using 18,944 National Football League game data spanning 32 years and find that using the individual historical data of each team in the CNN classifier for pattern recognition is better than using the data of all teams. The CNN in conjunction with the logistic regression judgment model outperforms the CNN in conjunction with SVM, Naïve Bayes, Adaboost, J48, and random forest, and its accuracy surpasses that of betting market prediction.