Inicio  /  Applied Sciences  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Comparative Study of Machine Learning Classifiers for Modelling Road Traffic Accidents

Tebogo Bokaba    
Wesley Doorsamy and Babu Sena Paul    

Resumen

Road traffic accidents (RTAs) are a major cause of injuries and fatalities worldwide. In recent years, there has been a growing global interest in analysing RTAs, specifically concerned with analysing and modelling accident data to better understand and assess the causes and effects of accidents. This study analysed the performance of widely used machine learning classifiers using a real-life RTA dataset from Gauteng, South Africa. The study aimed to assess prediction model designs for RTAs to assist transport authorities and policymakers. It considered classifiers such as naïve Bayes, logistic regression, k-nearest neighbour, AdaBoost, support vector machine, random forest, and five missing data methods. These classifiers were evaluated using five evaluation metrics: accuracy, root-mean-square error, precision, recall, and receiver operating characteristic curves. Furthermore, the assessment involved parameter adjustment and incorporated dimensionality reduction techniques. The empirical results and analyses show that the RF classifier, combined with multiple imputations by chained equations, yielded the best performance when compared with the other combinations.

 Artículos similares

       
 
Camino Eck, Xiaoyu Kröner and Dorte Janussen    
This study investigates taxonomic characteristics of carnivorous sponges from the Southern Ocean. The specimens were collected in 2010 from deep-sea hydrothermal vents of the East Scotia Ridge during the RRS James Cook Cruise JC42. All the investigated s... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace