Inicio  /  Water  /  Vol: 10 Par: 1 (2018)  /  Artículo
ARTÍCULO
TITULO

Hydrologic and Water Quality Evaluation of a Permeable Pavement and Biofiltration Device in Series

Alessandra S. Braswell    
Andrew R. Anderson and William F. Hunt    

Resumen

Two stormwater control measures (SCMs) installed in series were monitored for their individual impact on the hydrology and water quality of stormwater runoff from a 0.08-hectare watershed in Fayetteville, North Carolina, for 22 months. Runoff was first treated by permeable interlocking concrete pavement (PICP), the underdrain of which discharged into a proprietary box filter (Filterra® biofiltration) which combined high-flow-engineered media with modest biological treatment from a planted tree. Due to a deteriorating contributing drainage area and high ratio of impervious area to permeable pavement area (2.6:1), clogging of the permeable pavement surface caused an estimated 38% of stormwater to bypass as surface runoff. Fifty-six percent of runoff volume infiltrated underlying soils, and the remaining 6% exited the Filterra® as treated effluent; the hydrologic benefit of the Filterra® was minimal, as expected. Primary treatment through the PICP significantly reduced event mean concentrations (EMCs) of total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), and total Kjeldahl nitrogen (TKN) but contributed to a significant increase in nitrate/nitrite (NO2,3?N) concentrations. Secondary treatment by the Filterra® further reduced TSS and TP concentrations and supplemented nitrogen removal such that treatment provided by the overall system was as follows: TSS (removal efficiency (RE): 96%), TP (RE: 75%), TN (RE: 42%), and TKN (RE: 51%). EMCs remained unchanged for NO2,3?N. Despite EMC reductions, additional load reduction due to the Filterra® was modest (less than 2%). This was because (1) a majority of pollutant load was removed via PICP exfiltration losses, and (2) nearly all of the export load was from untreated surface runoff, which bypassed the Filterra®, and therefore the manufactured device never had the opportunity to treat it. Cumulative load reductions (based only upon events with samples collected at each sampling location) were 69%, 60%, and 41% for TSS, TP, and TN, respectively. When surface runoff was excluded, load reductions increased to over 96%; lower run-on ratios (which would reduce clogging rate) and/or increased maintenance frequency might have improved pollutant load removal.

 Artículos similares

       
 
Heba El-Bagoury and Ahmed Gad    
Flooding is a natural disaster with extensive impacts. Desert regions face altered flooding patterns owing to climate change, water scarcity, regulations, and rising water demands. This study assessed and predicted flash flood hazards by calculating disc... ver más
Revista: Water

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Felix Oteng Mensah, Clement Aga Alo and Duke Ophori    
The exigency of the current climate crisis demands a more comprehensive approach to addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of research?hydroclimatic trend detection and hydrological modeling?have been c... ver más
Revista: Hydrology

 
Pawel Burandt, Miroslaw Grzybowski, Katarzyna Glinska-Lewczuk, Wojciech Gotkiewicz, Monika Szymanska-Walkiewicz and Krystian Obolewski    
The objective of the study was to determine the relationship between the structure of phytocenoses in riparian wetland ecosystems and the hydrologic regime in a lowland river floodplain. The hydrobotanical study was conducted over three years?2017, 2018,... ver más
Revista: Water

 
Qiang Han, Tiansong Qi and Mosammat Mustari Khanaum    
Urbanization and climate change exacerbate groundwater overexploitation and urban flooding. The infiltration basin plays a significant role in protecting groundwater resources because it is a prevalent technology of managed aquifer recharge. It could als... ver más
Revista: Water