ARTÍCULO
TITULO

End-to-End Pedestrian Trajectory Forecasting with Transformer Network

Hai-Yan Yao    
Wang-Gen Wan and Xiang Li    

Resumen

Analysis of pedestrians? motion is important to real-world applications in public scenes. Due to the complex temporal and spatial factors, trajectory prediction is a challenging task. With the development of attention mechanism recently, transformer network has been successfully applied in natural language processing, computer vision, and audio processing. We propose an end-to-end transformer network embedded with random deviation queries for pedestrian trajectory forecasting. The self-correcting scheme can enhance the robustness of the network. Moreover, we present a co-training strategy to improve the training effect. The whole scheme is trained collaboratively by the original loss and classification loss. Therefore, we also achieve more accurate prediction results. Experimental results on several datasets indicate the validity and robustness of the network. We achieve the best performance in individual forecasting and comparable results in social forecasting. Encouragingly, our approach achieves a new state of the art on the Hotel and Zara2 datasets compared with the social-based and individual-based approaches.

 Artículos similares

       
 
Daping Xi, Yuhao Feng, Wenping Jiang, Nai Yang, Xini Hu and Chuyuan Wang    
The extraction of ship behavior patterns from Automatic Identification System (AIS) data and the subsequent prediction of travel routes play crucial roles in mitigating the risk of ship accidents. This study focuses on the Wuhan section of the dendritic ... ver más

 
Eric Hsueh-Chan Lu and You-Ru Lin    
With the rise in the Internet of Things (IOT), mobile devices and Location-Based Social Network (LBSN), abundant trajectory data have made research on location prediction more popular. The check-in data shared through LBSN hide information related to lif... ver más

 
Jing Tian, Zilin Zhao and Zhiming Ding    
With the widespread use of the location-based social networks (LBSNs), the next point-of-interest (POI) recommendation has become an essential service, which aims to understand the user?s check-in behavior at the current moment by analyzing and mining th... ver más

 
Ewa Dabrowska    
The paper deals with an important issue related to the identification, modelling, and prediction of environmental pollution in aquatic ecosystems of the Baltic Sea caused by anthropopressure. Water ecosystems are in danger nowadays because of the negativ... ver más
Revista: Water

 
Zhenzhong Yin and Bin Zhang    
Providing accurate and real-time bus travel time information is crucial for both passengers and public transportation managers. However, in the traditional bus travel time prediction model, due to the lack of consideration of the influence of different b... ver más
Revista: Future Internet