Inicio  /  Applied Sciences  /  Vol: 10 Par: 15 (2020)  /  Artículo
ARTÍCULO
TITULO

Multi-Term Attention Networks for Skeleton-Based Action Recognition

Xiaolei Diao    
Xiaoqiang Li and Chen Huang    

Resumen

The same action takes different time in different cases. This difference will affect the accuracy of action recognition to a certain extent. We propose an end-to-end deep neural network called ?Multi-Term Attention Networks? (MTANs), which solves the above problem by extracting temporal features with different time scales. The network consists of a Multi-Term Attention Recurrent Neural Network (MTA-RNN) and a Spatio-Temporal Convolutional Neural Network (ST-CNN). In MTA-RNN, a method for fusing multi-term temporal features are proposed to extract the temporal dependence of different time scales, and the weighted fusion temporal feature is recalibrated by the attention mechanism. Ablation research proves that this network has powerful spatio-temporal dynamic modeling capabilities for actions with different time scales. We perform extensive experiments on four challenging benchmark datasets, including the NTU RGB+D dataset, UT-Kinect dataset, Northwestern-UCLA dataset, and UWA3DII dataset. Our method achieves better results than the state-of-the-art benchmarks, which demonstrates the effectiveness of MTANs.

 Artículos similares

       
 
Huiying Ren, Z. Jason Hou, Mark Wigmosta, Ying Liu and L. Ruby Leung    
Changes in extreme precipitation events may require revisions of civil engineering standards to prevent water infrastructures from performing below the designated guidelines. Climate change may invalidate the intensity-duration-frequency (IDF) computatio... ver más
Revista: Water

 
Francisco Leitão, Vânia Baptista, Vasco Vieira, Patrícia Laginha Silva, Paulo Relvas and Maria Alexandra Teodósio    
Coastal upwelling has a significant local impact on marine coastal environment and on marine biology, namely fisheries. This study aims to evaluate climate and environmental changes in upwelling trends between 1950 and 2010. Annual, seasonal and monthly ... ver más
Revista: Water

 
Igor Paz, Bernard Willinger, Auguste Gires, Bianca Alves de Souza, Laurent Monier, Hervé Cardinal, Bruno Tisserand, Ioulia Tchiguirinskaia and Daniel Schertzer    
Recent studies have highlighted the need for high resolution rainfall measurements for better modelling of urban and peri-urban catchment responses. In this work, we used a fully-distributed model called ?Multi-Hydro? to study small-scale rainfall variab... ver más
Revista: Water

 
Kenan Liu, Wuyun Zhao, Bugong Sun, Pute Wu, Delan Zhu and Peng Zhang    
Autonomous navigation for agricultural machinery has broad and promising development prospects. Kalman filter technology, which can improve positioning accuracy, is widely used in navigation systems in different fields. However, there has not been much r... ver más
Revista: Water

 
Zhenzhen Di, Miao Chang, Peikun Guo, Yang Li and Yin Chang    
Most worldwide industrial wastewater, including in China, is still directly discharged to aquatic environments without adequate treatment. Because of a lack of data and few methods, the relationships between pollutants discharged in wastewater and those ... ver más
Revista: Water