Resumen
The purpose of this study was to clarify the structural and ultrastructural alterations of the enamel and dentin collagen network in the deciduous teeth of children affected by osteogenesis imperfecta (OI) using field-emission in-lens scanning electron microscopy (FEI-SEM) and transmission electron microscopy (TEM) analyses. Exfoliated primary teeth were collected from children with a diagnosis of OI and from healthy individuals (N = 24). Tooth slices containing both dentin and enamel were fixed, dehydrated and dried, gold sputtered, and observed using FEI-SEM. Additional dentin fragments were decalcified, dehydrated, embedded in resin, cut, and processed for TEM analysis. Under FEI-SEM, the enamel in OI-affected children showed an irregular prism distribution with the enamel hydroxyapatite crystals unpacked. Ultrastructural correlative analysis of the dentin in patients affected by OI showed an altered collagen pattern with a low density. In some areas, teeth in OI patients showed a reduction in the number of dentinal tubules, with odontoblastic process missing in most of the tubules. The presence of altered dentine and enamel organization in OI children was firmly established at an ultrastructural level, but additional biochemical studies are necessary in order to clarify quantitatively and qualitatively the collagenic and non-collagenic proteins in this disorder.