Inicio  /  Applied System Innovation  /  Vol: 5 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Mechanical Properties of 3D-Printed Components Using Fused Deposition Modeling: Optimization Using the Desirability Approach and Machine Learning Regressor

Vijaykumar S. Jatti    
Mandar S. Sapre    
Ashwini V. Jatti    
Nitin K. Khedkar and Vinaykumar S. Jatti    

Resumen

The fused deposition modelling (FDM) technique involves the deposition of a fused layer of material according to the geometry designed in the software. Several parameters affect the quality of parts produced by FDM. This paper investigates the effect of FDM printing process parameters on tensile strength, impact strength, and flexural strength. The effects of process parameters such as printing speed, layer thickness, extrusion temperature, and infill percentage are studied. Polyactic acid (PLA) was used as a filament material for printing test specimens. The experimental layout is designed according to response surface methodology (RSM) and responses are collected. Specimens are prepared for testing of these parameters as per ASTM standards. A mathematical model for each of the responses is developed based on the nonlinear regression method. The desirability approach, nonlinear regression, as well as experimental values are in close agreement with each other. The desirability approach predicted the tensile strength, impact strength, and flexural strength with a less percentage error of 3.109, 6.532, and 3.712, respectively. The nonlinear regression approach predicted the tensile strength, impact strength, and flexural strength with a less percentage error of 2.977, 6.532, and 3.474, respectively. The desirability concept and nonlinear regression approach resulted in the best mechanical property of the FDM-printed part.

 Artículos similares

       
 
Lin Yang, Yansong Wang, Lei Wei and Yao Chen    
The spaceborne solar observation system is crucial for the study of space phenomena such as solar flares, which requires high tracking accuracy. This study presents a coupling model that integrates mechanical, electrical, and control models to investigat... ver más
Revista: Aerospace

 
?ydrunas Kavaliauskas and Igor ?ajev    
In the industrial and sales processes, dosing systems of various constructions, whose operation is based on mechanical vibrations (vibratory feeders), are very often used. These systems face many problems, such as resonant frequency, flow instability of ... ver más

 
Pengyu Wei, Chuntong Li, Ze Jiang and Deyu Wang    
Digital twins, an innovative technology propelled by data and models, play a seminal role in the digital transformation and intelligent upgrade of ships. This study introduces a digital twin methodology for the real-time monitoring of ship structure defo... ver más

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Zhongao Yang, Xiaohua Ding, Xin Liu, Abdoul Wahab, Zhongchen Ao, Ya Tian, Van Son Bang, Zhaoxi Long, Guodong Li and Penglin Ma    
The instability of geological slopes in mining environments poses a significant challenge to the safety and efficiency of operations. Waste Dump#2 at the Ziluoyi Iron Mine in China is a notable case study that highlights the challenges associated with si... ver más
Revista: Water