ARTÍCULO
TITULO

A COLREGs-Compliant Collision Avoidance Decision Approach Based on Deep Reinforcement Learning

Weiqiang Wang    
Liwen Huang    
Kezhong Liu    
Xiaolie Wu and Jingyao Wang    

Resumen

It is crucial to develop a COLREGs-compliant intelligent collision avoidance system for the safety of unmanned ships during navigation. This paper proposes a collision avoidance decision approach based on the deep reinforcement learning method. A modified collision avoidance framework is developed that takes into consideration the characteristics of different encounter scenarios. Hierarchical reward functions are established to assign reward values to constrain the behavior of the agent. The collision avoidance actions of the agent under different encounter situations are evaluated on the basis of the COLREGs to ensure ship safety and compliance during navigation. The deep Q network algorithm is introduced to train the proposed collision avoidance decision framework, while various simulation experiments are performed to validate the developed collision avoidance model. Results indicate that the proposed method can effectively perform tasks that help ships avoid collisions in different encounter scenarios. The proposed approach is a novel attempt for intelligent collision avoidance decisions of unmanned ships.

 Artículos similares

       
 
Paul Lee, Gerasimos Theotokatos and Evangelos Boulougouris    
Autonomous ships are expected to extensively rely on perception sensors for situation awareness and safety during challenging operations, such as reactive collision avoidance. However, sensor noise is inevitable and its impact on end-to-end decision-maki... ver más

 
Jingchen Wang, Qihe Shan, Tieshan Li, Geyang Xiao and Qi Xu    
This paper studied the collision avoidance issue in the formation-containment tracking control of multi-USVs (unmanned surface vehicles) with constrained velocity and driving force. Specifically, based on a dual-layer control framework, it designed a mul... ver más

 
Sergio Bonaccorsi, Marco Felice Montaruli, Pierluigi Di Lizia, Moreno Peroni, Alessandro Panico, Marco Rigamonti and Francesco Del Prete    
The increasing number of objects in Earth orbit has encouraged the development of space surveillance and tracking (SST) applications. A critical aspect of SST is the identification and characterization of close encounters between pairs of space objects. ... ver más
Revista: Aerospace

 
Khaled Rabieh, Rasha Samir and Marianne A. Azer    
Rapid advances in technology and shifting tastes among motorists have reworked the contemporary automobile production sector. Driving is now much safer and more convenient than ever before thanks to a plethora of new technology and apps. Millions of peop... ver más
Revista: Information

 
Bohdan Petryshyn, Serhii Postupaiev, Soufiane Ben Bari and Armantas Ostreika    
The development of autonomous driving models through reinforcement learning has gained significant traction. However, developing obstacle avoidance systems remains a challenge. Specifically, optimising path completion times while navigating obstacles is ... ver más
Revista: Information