Inicio  /  Applied Sciences  /  Vol: 11 Par: 9 (2021)  /  Artículo
ARTÍCULO
TITULO

Short-Term Prediction of COVID-19 Cases Using Machine Learning Models

Md. Shahriare Satu    
Koushik Chandra Howlader    
Mufti Mahmud    
M. Shamim Kaiser    
Sheikh Mohammad Shariful Islam    
Julian M. W. Quinn    
Salem A. Alyami and Mohammad Ali Moni    

Resumen

The first case in Bangladesh of the novel coronavirus disease (COVID-19) was reported on 8 March 2020, with the number of confirmed cases rapidly rising to over 175,000 by July 2020. In the absence of effective treatment, an essential tool of health policy is the modeling and forecasting of the progress of the pandemic. We, therefore, developed a cloud-based machine learning short-term forecasting model for Bangladesh, in which several regression-based machine learning models were applied to infected case data to estimate the number of COVID-19-infected people over the following seven days. This approach can accurately forecast the number of infected cases daily by training the prior 25 days sample data recorded on our web application. The outcomes of these efforts could aid the development and assessment of prevention strategies and identify factors that most affect the spread of COVID-19 infection in Bangladesh.

 Artículos similares

       
 
Feifei He, Qinjuan Wan, Yongqiang Wang, Jiang Wu, Xiaoqi Zhang and Yu Feng    
Accurately predicting hydrological runoff is crucial for water resource allocation and power station scheduling. However, there is no perfect model that can accurately predict future runoff. In this paper, a daily runoff prediction method with a seasonal... ver más
Revista: Water

 
Yahui Hu, Jiaqi Yan, Ertai Cao, Yimeng Yu, Haiming Tian and Heyuan Huang    
The statistical analysis of civil aircraft accidents reveals that the highest incidence of mishaps occurs during the approach and landing stages. Predominantly, these accidents are marked by abnormal energy states, leading to critical situations like sta... ver más
Revista: Aerospace

 
Zitao Du, Wenbo Yang, Yuna Yin, Xinwei Ma and Jiacheng Gong    
When new rail stations or lines are planned, long-term planning for decades to come is required. The short-term passenger flow prediction is no longer of practical significance, as it only takes a few factors that affect passenger flow into consideration... ver más
Revista: Applied Sciences

 
Hu Cai, Jiafu Wan and Baotong Chen    
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital ... ver más
Revista: Applied Sciences

 
Yadong Zhou, Zhenchao Teng, Linlin Chi and Xiaoyan Liu    
Based on the unit life and death technology, the dynamic evolution process of soil loss is considered, and a pipe-soil nonlinear coupling model of buried pipelines passing through the collapse area is constructed. The analysis shows that after the third ... ver más
Revista: Applied Sciences