Inicio  /  Coatings  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Evaluation of Zirconia and High Performance Polymer Abutment Surface Roughness and Stress Concentration for Implant-Supported Fixed Dental Prostheses

Roberto Lo Giudice    
Alessandro Sindoni    
João Paulo Mendes Tribst    
Amanda Maria de Oliveira Dal Piva    
Giuseppe Lo Giudice    
Ugo Bellezza    
Giorgio Lo Giudice and Fausto Famà    

Resumen

Background: The High Performance Polymer is a based polymer biomaterial that was introduced as dental material to manufacture dentures superstructure and dental implants abutments. However, its surface characteristics and stress state still need to be properly described. The aim of this study was to compare the surface characteristics of a High Performance Polymer (Bio-HPP, Bredent, Senden, Germany) for computer-aided design and computer-aided manufacturing (CAD/CAM) milling and a Zirconia (Zirkonzahn, Steger, Ahrntal, Italy). Methods: The abutments surface roughness (Ra) was evaluated for each abutment material (N = 12) using a confocal laser microscope. Data were evaluated using One-Way ANOVA and Tukey tests (p < 0.05). In addition, a finite element analysis software was used to present stress measurement data as stress maps with 100 N loading. Results were generated according to Von-mises stress criteria and stress peaks were recorded from each structure. Results: Results showed a mean Ra of 0.221 ± 0.09 µm for Bio-HPP and 1.075 ± 0.24 µm for Zirconia. Both surface profiles presented a smooth characteristic regardless the measurement axis. The stress peaks from implant fixture and screw were not affected by the abutment material, however the high performance polymer showed the highest stress magnitude for the abutment region. Conclusions: Comparing the present results with the literature it is suggested that the CAD/CAM High Performance Polymer abutments present an adequate surface roughness with acceptable values of stress.

 Artículos similares

       
 
Daniel Suarez-Riera, Luca Lavagna, Juan Felipe Carvajal, Jean-Marc Tulliani, Devid Falliano and Luciana Restuccia    
Biochar, the solid sub-product of biomass pyrolysis, is widely considered an effective water retention material thanks to its porous microstructure and high specific surface area. This study investigates the possibility of improving both mechanical and r... ver más
Revista: Applied Sciences

 
Haydar Aygun    
A computational and theoretical investigation of acoustical and vibrational properties of rigid thin fiberglass material was carried out for different boundary conditions. Fiberglass materials could be applied in industries varying from the aircraft and ... ver más
Revista: Acoustics

 
Grzegorz Ilewicz and Edyta Ladyzynska-Kozdras    
The surgical robots currently used in cardiac surgery are equipped with a remote center of motion (RCM) mechanism that enables the required spherical workspace. The dynamics model of the surgical robot?s RCM mechanism presented in this work includes a di... ver más
Revista: Applied Sciences

 
Wenxiang Xu, Jianjun Shi and Hao Zhang    
Building a new tunnel adjacent to an existing tunnel has become a common means of transformation in engineering. Existing tunnels are prone to some deterioration, such as cavities and cracks under long-term traffic load. This kind of deterioration tunnel... ver más
Revista: Applied Sciences

 
Murat Gulen and Havvanur Kilic    
In this study, full-scale laboratory tests were conducted on a 315 mm diameter HDPE pipe under shallow buried and localised surface loading conditions to investigate the effects of pipe deflection and arching on stress distribution and the lateral earth ... ver más
Revista: Applied Sciences