Inicio  /  Applied Sciences  /  Vol: 9 Par: 20 (2019)  /  Artículo
ARTÍCULO
TITULO

Design and Validation of the Invariant Imbedded T-Matrix Scattering Model for Atmospheric Particles with Arbitrary Shapes

Shuai Hu    
Lei Liu    
Taichang Gao and Qingwei Zeng    

Resumen

Light scattering by non-spherical particles is an important factor influencing atmospheric radiative transfer. To accurately simulate the scattering properties of non-spherical particles, the Invariant Imbedded T-matrix method (IIM T-Matrix) is developed by combining the Lorenz?Mie theory and invariant imbedding technique. In this model, the non-spherical particle is regarded as an inhomogeneous sphere and discretized into multiple spherical layers in the spherical coordinate system. The T-matrix of the inscribed sphere is firstly calculated by the Lorenz?Mie theory, and then taking it as the initial value, the T-matrix is updated layer by layer by using the invariant imbedding technique. To improve the computational efficiency, the model is further parallelized by the OpenMP technique. To verify the simulation accuracy of the IIM T-Matrix method, the results of the model are compared with those of the EBCM (Extended Boundary Condition Method) T-Matrix method, DDA (Discrete Dipole Approximation) and MRTD (Multi-Resolution Time Domain). The results show that the scattering phase matrix simulated by the IIM T-Matrix method closely agrees with that of the well-tested models, indicating that the IIM T-Matrix method is a powerful tool for the light scattering simulation of non-spherical particles. Since the IIM T-Matrix method is derived from the volume integral equation, compared to the T-Matrix method which is based on surface integral principles (i.e., ?EBCM? or the ?null field method?), it can be applied to the scattering calculations of particle with arbitrary shapes and inhomogeneous compositions, which can greatly expand the application scope of the T-Matrix method.

 Artículos similares

       
 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace

 
Rohan S. Sharma and Serhat Hosder    
The intent of this work was to investigate the feasibility of developing machine learning models for calculating values of airplane configuration design variables when provided time-series, mission-informed performance data. Shallow artificial neural net... ver más
Revista: Aerospace

 
Pietro Vivalda and Marco Fioriti    
The growing environmental public awareness and the consequential pressure on every industrial field has made environmental impact assessment increasingly important in the last few years. In this scope, the most established tool used in the specialized li... ver más
Revista: Aerospace

 
Dong Min Kim, Soon Ho Hong, Se Hyeon Jeong and Sun Je Kim    
The interest in wind-assisted ship propulsions (WASPs) is increasing to improve fuel efficiency and to reduce greenhouse gas emissions in ships. A rotor sail, one of the typical WASPs, can provide auxiliary propulsive force by rotating a cylinder-shaped ... ver más

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms