Resumen
Sonar survey of shallow water bodies has challenged scientists for a long time. Although these water courses are small, still they have an increasing ecological, touristic and economical role. As maritime sonars are non-ideal tools for shallow waters, the bathymetric survey of these rivers has been taken with cross-sectional methods. Due to recent developments, interferometric surveying technology have also burst into the market of recreational-grade fish-finders. The objective of the current study was the development of a novel, complex and integrated surveying technique which is affordable, robust and applicable even at low water levels. A recreational-grade sonar system was assembled and mounted on a double-hull vessel and connected with a geodetic Global Navigation Satellite System (GNSS) device. We have developed a novel software which enables the bridging between a closed sonar file format and the commonly used Geographic Information System (GIS) datasets. As a result, the several month-long conventional bathymetric survey of the 146 km-long reach of the Drava River was reduced to 20 days and provided channel bathymetry of many orders of magnitude higher than the classical methods. Additionally, a large number of spatial derivatives were generated which enables the analysis of channel morphology, textural variation of channel sediments and the accurate delineation of navigational routes.