Resumen
Information-centric networking (ICN) is an emerging network architecture that has the potential to address low-transmission latency and high-reliability requirements in the fifth generation and beyond communication networks (5G/B5G). In the ICN architectures that use the identifier?locator separation mode, a name resolution system (NRS) is an important infrastructure for managing and maintaining the mappings between identifiers and locators. To meet the demands of time-sensitive applications, researchers have developed a distributed local NRS that can provide name resolution service within deterministic latency, which means it can respond to a name resolution request within a latency upper bound. However, processing name resolution requests only locally cannot take full advantage of the potential of the distributed local NRS. In this paper, we propose a name resolution approach, called adjacency-information-entropy-based cooperative name resolution (ACNR). In ACNR, when a name resolution node receives a name resolution request from a user, it can use neighboring name resolution nodes to respond to this request in a parallel processing manner. For this purpose, ACNR uses the information entropy that takes into account the adjacency and latency between name resolution nodes to describe the local structure of nodes efficiently. The proposed approach is extensively validated on simulated networks. Compared with several other approaches, the experiment results show that ACNR can discover more cooperative neighbors in a reasonable communication overhead, and achieve a higher name resolution success rate.