Resumen
Due to their porous nature, lightweight aggregates have been shown to exhibit thermal properties that are advantageous when used in building materials such as lightweight concrete, grout, mortar, and concrete masonry units. Limited data exist on the thermal properties of materials that incorporate lightweight aggregate where the pore system has not been altered, and very few studies have been performed to quantify the building energy performance of structures constructed using lightweight building materials in commonly utilized structural and building envelope components. In this study, several lightweight concrete and masonry building materials were tested to determine the thermal properties of the bulk materials, providing more accurate inputs to building energy simulation than have previously been used. These properties were used in EnergyPlus building energy simulation models for several types of commercial structures for which materials containing lightweight aggregates are an alternative commonly considered for economic and aesthetic reasons. In a simple model, use of sand lightweight concrete resulted in prediction of 15?17% heating energy savings and 10% cooling energy savings, while use of all lightweight concrete resulted in prediction of approximately 35?40% heating energy savings and 30% cooling energy savings. In more complex EnergyPlus reference models, results indicated superior thermal performance of lightweight aggregate building materials in 48 of 50 building energy simulations. Predicted energy savings for the five models ranged from 0.2% to 6.4%.