Inicio  /  Water  /  Vol: 15 Par: 23 (2023)  /  Artículo
ARTÍCULO
TITULO

Optimized Irrigated Water Management Using Numerical Flow Modeling Coupled with Finite Element Model: A Case Study of Rechna Doab, Pakistan

Muhammad Sanaullah    
Xiuquan Wang    
Sajid Rashid Ahmad    
Kamran Mirza    
Muhammad Qasim Mahmood and Muhammad Kamran    

Resumen

The fate of agriculture in Pakistan is predominantly concerned with excessive water mining threats to the subsurface water resources. The current study integrates the Visual MODFLOW-2000 application to estimate the water balance of an aquifer bounded by the Chenab River in the West and the Ravi River in the East, which covers an area of about 2.98 million hectares. An assimilated method of groundwater flow is employed to characterize the flow dynamics of the Rechna Doab aquifer. The Digital Elevation Model (DEM) produced by the Shuttle Radar Topography Mission (SRTM) and a mesh of discretized cell size (2500 m) were incorporated into the model design. The conceptual model of the alluvial aquifer involves trifold vertical boundaries (an initial fold thickness set up to 150 m). The model input parameters are precipitation, seepage through irrigation, return flow, recharge, hydraulic conductivity and evapotranspiration. Empirical relations are established (at the basin scale) for the discharge input of irrigation canals. Model results confirm that groundwater flow follows the topographic configuration of the study area (i.e., northeast to southwest), and the seepage from irrigating canals and rainfall appeared to be the main source of groundwater recharge among various resources. The zone budget study under steady state simulation showed that the total direct recharge to the aquifer is calculated as 522,910 acre foot. The simulated water balance of the studied aquifer reflects more fluctuations in river leakage. The predictive optimized model reflects an adaptation of canal lining and installation of additional tube wells that will minimize canal seepage by 70% and lead to the reclamation of 37,000 acres of water-logged land for normal cropping.

 Artículos similares