Resumen
Vehicle-to-everything (V2X) technology will significantly enhance the information perception ability of drivers and assist them in optimizing car-following behavior. Utilizing V2X technology, drivers could obtain motion state information of the front vehicle, non-neighboring front vehicle, and front vehicles in the adjacent lanes (these vehicles are collectively referred to as generalized preceding vehicles in this research). However, understanding of the impact exerted by the above information on car-following behavior and traffic flow is limited. In this paper, a car-following model considering the average velocity of generalized preceding vehicles (GPV) is proposed to explore the impact and then calibrated with the next generation simulation (NGSIM) data utilizing the genetic algorithm. The neutral stability condition of the model is derived via linear stability analysis. Numerical simulation on the starting, braking and disturbance propagation process is implemented to further study features of the established model and traffic flow stability. Research results suggest that the fitting accuracy of the GPV model is 40.497% higher than the full velocity difference (FVD) model. Good agreement between the theoretical analysis and the numerical simulation reveals that motion state information of GPV can stabilize traffic flow of following vehicles and thus alleviate traffic congestion.