Resumen
Most climate change mitigation scenarios rely on the incremental use of biomass as energy feedstock. Therefore, increasing the share of alternative sustainable energy sources as biomass is crucial to provide both peak and base electricity loads in future scenarios. The bioenergy potential of Ecuador has been addressed for agricultural by-products but not for dedicated bioenergy crops. Agricultural zoning studies have been developed for food crops but not for energy crops. Currently, the bioenergy share of electricity produced in Ecuador (1.4%) comes mainly from the use of sugar cane bagasse from sugar production. This study aims to identify potential sustainable bioenergy resources for continental Ecuador using agroecological zoning methodologies and considerations regarding land management, food security, in-direct land use change and ecological and climate change risks. The results identified 222,060.71 ha available to grow dedicated bioenergy crops and potential electricity production of 8603 GWh/year; giant reed ranks first with a potential net energy yield of 4024 GWh per year, and Manabí province presents the highest potential with 3768 GWh/year. Large-scale deployment of bioenergy in Ecuador would require the study of sustainability considerations of each project. The species studied are traditional bioenergy crops; research on novel species is encouraged.