Inicio  /  Algorithms  /  Vol: 13 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Feasibility of Kd-Trees in Gaussian Process Regression to Partition Test Points in High Resolution Input Space

Ivan De Boi    
Bart Ribbens    
Pieter Jorissen and Rudi Penne    

Resumen

Bayesian inference using Gaussian processes on large datasets have been studied extensively over the past few years. However, little attention has been given on how to apply these on a high resolution input space. By approximating the set of test points (where we want to make predictions, not the set of training points in the dataset) by a kd-tree, a multi-resolution data structure arises that allows for considerable gains in performance and memory usage without a significant loss of accuracy. In this paper, we study the feasibility and efficiency of constructing and using such a kd-tree in Gaussian process regression. We propose a cut-off rule that is easy to interpret and to tune. We show our findings on generated toy data in a 3D point cloud and a simulated 2D vibrometry example. This survey is beneficial for researchers that are working on a high resolution input space. The kd-tree approximation outperforms the naïve Gaussian process implementation in all experiments.

 Artículos similares

       
 
Dacheng Yu, Mingjun Zhang, Feng Yao and Jitao Li    
Variational Mode Decomposition (VMD) has typically been used in weak fault feature extraction in recent years. The problem analyzed in this study is weak fault feature extraction and the enhancement of AUV thrusters based on Artificial Rabbits Optimizati... ver más

 
Dimitris Fotakis, Panagiotis Patsilinakos, Eleni Psaroudaki and Michalis Xefteris    
In this work, we consider the problem of shape-based time-series clustering with the widely used Dynamic Time Warping (DTW) distance. We present a novel two-stage framework based on Sparse Gaussian Modeling. In the first stage, we apply Sparse Gaussian P... ver más
Revista: Algorithms

 
Stanislav Kirpichenko, Lev Utkin, Andrei Konstantinov and Vladimir Muliukha    
A method for estimating the conditional average treatment effect under the condition of censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed. The main idea behind the method is to apply the Beran estimator for e... ver más
Revista: Algorithms

 
Danilo Pau, Andrea Pisani and Antonio Candelieri    
In the context of TinyML, many research efforts have been devoted to designing forward topologies to support On-Device Learning. Reaching this target would bring numerous advantages, including reductions in latency and computational complexity, stronger ... ver más
Revista: Algorithms

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace