Inicio  /  Water  /  Vol: 6 Par: 6 (2014)  /  Artículo
ARTÍCULO
TITULO

Photocatalytic Degradation of Phenol and Phenol Derivatives Using a Nano-TiO2 Catalyst: Integrating Quantitative and Qualitative Factors Using Response Surface Methodology

Marissa Choquette-Labbé    
Wudneh A. Shewa    
Jerald A. Lalman and Saravanan R. Shanmugam    

Resumen

Due to the toxicity effects and endocrine disrupting properties of phenolic compounds, their removal from water and wastewater has gained widespread global attention. In this study, the photocatalytic degradation of phenolic compounds in the presence of titanium dioxide (TiO2) nano-particles and UV light was investigated. A full factorial design consisting of three factors at three levels was used to examine the effect of particle size, temperature and reactant type on the apparent degradation rate constant. The individual effect of TiO2 particle size (5, 10 and 32 nm), temperature (23, 30 and 37 °C) and reactant type (phenol, o-cresol and m-cresol) on the apparent degradation rate constant was determined. A regression model was developed to relate the apparent degradation constant to the various factors. The largest photocatalytic activity was observed at an optimum TiO2 particle size of 10 nm for all reactants. The apparent degradation rate constant trend was as follows: o-cresol > m-cresol > phenol. The ANOVA data indicated no significant interaction between the experimental factors. The lowest activation energy was observed for o-cresol degradation using 5-nm TiO2 particles. A maximum degradation rate constant of 0.0138 min-1 was recorded for o-cresol at 37 °C and a TiO2 particle size of 13 nm at a D-optimality value of approximately 0.98. The response model adequately related the apparent degradation rate constant to the factors within the range of factors under consideration.

 Artículos similares

       
 
Chiara Concetta Siciliano, Van Minh Dinh, Paolo Canu, Jyri-Pekka Mikkola and Santosh Govind Khokarale    
In this study, glutaraldehyde cross-linked chitosan support, as well as the catalysts obtained after loading Ag metal (Ag/Chitosan), were synthesised and applied for adsorption and reduction of phenol red dye in an aqueous solution. The Ag/chitosan catal... ver más

 
Dmitriy V. Nelyubov, Marat I. Fakhrutdinov, Alena A. Sarkisyan, Evgeniy A. Sharin, Mikhail A. Ershov, Ulyana A. Makhova, Alisa E. Makhmudova, Nikita A. Klimov, Marina Y. Rogova, Vsevolod D. Savelenko, Vladimir M. Kapustin, Marina M. Lobashova and Ekaterina O. Tikhomirova    
Research was carried out on the possibility of involving oil refining wastes and petrochemical by-products in marine fuel oil. It was shown that the properties of the studied products (VAT distillation residue of butyl alcohols, heavy pyrolysis tar, desa... ver más

 
Muhammad Shettima Lawan, Rajeev Kumar, Jamshaid Rashid and Mohamed Abou El-Fetouh Barakat    
The treatment of petroleum refinery wastewater (PRWW) is of great interest in industrial wastewater management. This wastewater contains a diverse concentration of contaminants such as oil and grease, petroleum hydrocarbons, phenols, ammonia, and sulfide... ver más
Revista: Water

 
Dezso-Róbert Fikó, Botond Ráduly, István Máthé, Tamás Felföldi, Szabolcs Lányi and Szabolcs Szilveszter    
Bioaugmentation potential and phenol substrate affinity in a multi-carbon-source condition for three Acinetobacter strains (Acinetobacter towneri CFII-87, Acinetobacter johnsonii CFII-99A and Acinetobacter sp. CFII-98) were demonstrated. First, the pheno... ver más
Revista: Water

 
Gi-Taek Oh, Chi-Kyu Ahn and Min-Woo Lee    
A wastewater treatment configuration consisting of advanced oxidation pretreatment and biological wastewater treatment process (BWTP) was investigated to treat a reclaimer wastewater generated in a steel-making industry, which contained high concentratio... ver más
Revista: Applied Sciences