Resumen
The tip leakage flow over the blades of an axial compressor rotor adversely affects the axial rotor efficiency and can determine the onset of tip leakage stall. The performance of a new casing treatment concept in the shape of an axisymmetric recirculation channel is explored by steady Reynolds-Averaged Navier?Stokes (RANS) realizable k-e modelling on the NASA Rotor 37 test case. The modelling exposed a number of attractive features. The casing treatment increased the stall margin at no penalty to the rotor isentropic efficiency over the rotor operating line. A recirculation in the casing channel self-activated and self-adjusted with the rotor loading to provide more passive flow control at higher rotor loading conditions. The nozzle-shaped recirculation channel outflow opposed the tip leakage jet, re-located the casing surface flow interface further downstream, and reduced the rotor blade tip incidence angle. This combination of features makes the new casing treatment particularly attractive for applications to high thrust-to-weight ratio engines, typical of high-performance jet aircraft.