Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Deep Learning-Based Timing Offset Estimation for Deep-Sea Vertical Underwater Acoustic Communications

Yanbo Wu    
Yan Yao    
Ning Wang and Min Zhu    

Resumen

This study proposes a novel receiver structure for underwater vertical acoustic communication in which the bias in the correlation-based estimation for the timing offset is learned and then estimated by a deep neural network (DNN) to an accuracy that renders subsequent use of equalizers unnecessary. For a duration of 7 s, 15 timing offsets of the linear frequency modulation (LFM) signals obtained by the correlation were fed into the DNN. The model was based on the Pierson?Moskowitz (PM) random surface height model with a moderate wind speed and was further verified under various wind speeds and experimental waveforms. This receiver, embedded with the DNN model, demonstrated lower complexity and better performance than the adaptive equalizer-based receiver. The 5000 m depth deep-sea experimental data show the superiority of the proposed combination of DNN-based synchronization and the time-invariant equalizer.

 Artículos similares

       
 
JongBae Kim    
This technology can prevent accidents involving large vehicles, such as trucks or buses, by selecting an optimal driving lane for safe autonomous driving. This paper proposes a method for detecting forward-driving vehicles within road images obtained fro... ver más
Revista: Applied Sciences

 
Yangqing Xu, Yuxiang Zhao, Qiangqiang Jiang, Jie Sun, Chengxin Tian and Wei Jiang    
During the construction of deep foundation pits in subways, it is crucial to closely monitor the horizontal displacement of the pit enclosure to ensure stability and safety, and to reduce the risk of structural damage caused by pit deformations. With adv... ver más
Revista: Applied Sciences

 
Mihael Gudlin, Miro Hegedic, Matija Golec and Davor Kolar    
In the quest for industrial efficiency, human performance within manufacturing systems remains pivotal. Traditional time study methods, reliant on direct observation and manual video analysis, are increasingly inadequate, given technological advancements... ver más
Revista: Applied Sciences

 
Zahra Ameli, Shabnam Jafarpoor Nesheli and Eric N. Landis    
The application of deep learning (DL) algorithms has become of great interest in recent years due to their superior performance in structural damage identification, including the detection of corrosion. There has been growing interest in the application ... ver más
Revista: Infrastructures

 
François Legrand, Richard Macwan, Alain Lalande, Lisa Métairie and Thomas Decourselle    
Automated Cardiac Magnetic Resonance segmentation serves as a crucial tool for the evaluation of cardiac function, facilitating faster clinical assessments that prove advantageous for both practitioners and patients alike. Recent studies have predominant... ver más
Revista: Algorithms