Inicio  /  Applied Sciences  /  Vol: 9 Par: 12 (2019)  /  Artículo
ARTÍCULO
TITULO

DC2Anet: Generating Lumbar Spine MR Images from CT Scan Data Based on Semi-Supervised Learning

Cheng-Bin Jin    
Hakil Kim    
Mingjie Liu    
In Ho Han    
Jae Il Lee    
Jung Hwan Lee    
Seongsu Joo    
Eunsik Park    
Young Saem Ahn and Xuenan Cui    

Resumen

Magnetic resonance imaging (MRI) plays a significant role in the diagnosis of lumbar disc disease. However, the use of MRI is limited because of its high cost and significant operating and processing time. More importantly, MRI is contraindicated for some patients with claustrophobia or cardiac pacemakers due to the possibility of injury. In contrast, computed tomography (CT) scans are much less expensive, are faster, and do not face the same limitations. In this paper, we propose a method for estimating lumbar spine MR images based on CT images using a novel objective function and a dual cycle-consistent adversarial network (DC2 2 Anet) with semi-supervised learning. The objective function includes six independent loss terms to balance quantitative and qualitative losses, enabling the generation of a realistic and accurate synthetic MR image. DC2 2 Anet is also capable of semi-supervised learning, and the network is general enough for supervised or unsupervised setups. Experimental results prove that the method is accurate, being able to construct MR images that closely approximate reference MR images, while also outperforming four other state-of-the-art methods.

 Artículos similares

       
 
Tomasz Walczyna and Zbigniew Piotrowski    
The proliferation of ?Deep fake? technologies, particularly those facilitating face-swapping in images or videos, poses significant challenges and opportunities in digital media manipulation. Despite considerable advancements, existing methodologies ofte... ver más
Revista: Applied Sciences

 
Woonghee Lee and Younghoon Kim    
This study introduces a deep-learning-based framework for detecting adversarial attacks in CT image segmentation within medical imaging. The proposed methodology includes analyzing features from various layers, particularly focusing on the first layer, a... ver más
Revista: Applied Sciences

 
Kui Zeng, Shutan Xu, Daode Shu and Ming Chen    
Medaka (Oryzias latipes), as a crucial model organism in biomedical research, holds significant importance in fields such as cardiovascular diseases. Currently, the analysis of the medaka ventricle relies primarily on visual observation under a microscop... ver más
Revista: Applied Sciences

 
Shoffan Saifullah and Rafal Drezewski    
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc... ver más
Revista: Applied Sciences

 
Giampaolo D?Alessandro, Pantea Tavakolian and Stefano Sfarra    
The present review aims to analyze the application of infrared thermal imaging, aided by bio-heat models, as a tool for the diagnosis of skin and breast cancers. The state of the art of the related technical procedures, bio-heat transfer modeling, and th... ver más
Revista: Applied Sciences