ARTÍCULO
TITULO

MDST-DBSCAN: A Density-Based Clustering Method for Multidimensional Spatiotemporal Data

Changlock Choi and Seong-Yun Hong    

Resumen

The increasing use of mobile devices and the growing popularity of location-based ser-vices have generated massive spatiotemporal data over the last several years. While it provides new opportunities to enhance our understanding of various urban dynamics, it poses challenges at the same time due to the complex structure and large-volume characteristic of the spatiotemporal data. To facilitate the process and analysis of such spatiotemporal data, various data mining and clustering methods have been proposed, but there still needs to develop a more flexible and computationally efficient method. The purpose of this paper is to present a clustering method that can work with large-scale, multidimensional spatiotemporal data in a reliable and efficient manner. The proposed method, called MDST-DBSCAN, is applied to idealized patterns and a real data set, and the results from both examples demonstrate that it can identify clusters accurately within a reasonable amount of time. MDST-DBSCAN performs well on both spatial and spatiotemporal data, and it can be particularly useful for exploring massive spatiotemporal data, such as detailed real estate transactions data in Seoul, Korea.

 Artículos similares

       
 
Syed Adil Hussain, Muhammad Umair Hassan, Wajeeha Nasar, Sara Ghorashi, Mona M. Jamjoom, Abdel-Haleem Abdel-Aty, Amna Parveen and Ibrahim A. Hameed    
The analysis of individuals? movement behaviors is an important area of research in geographic information sciences, with broad applications in smart mobility and transportation systems. Recent advances in information and communication technologies have ... ver más

 
Hongzan Jiao, Faxing Yang, Shasha Xu and Shibiao Huang    
Urban logistics is important to a city?s sustainable growth and development. With the increase in population and the economic growth in urban areas, the issue of congestion and the negative influence of transport of goods on people and the environment is... ver más

 
Xiaolong Li, Yun Zhang, Longgang Xiang and Tao Wu    
Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and affordably by mining floating vehicle data (FCD). A method is proposed to extract the number of lan... ver más

 
Jingxue Wang, Xiao Dong and Guangwei Liu    
The accuracy of point cloud processing results is greatly dependent on the determination of the voxel size and shape during the point cloud voxelization process. Previous studies predominantly set voxel sizes based on point cloud density or the size of g... ver más

 
Karima Khettabi, Zineddine Kouahla, Brahim Farou, Hamid Seridi and Mohamed Amine Ferrag    
Internet of Things (IoT) systems include many smart devices that continuously generate massive spatio-temporal data, which can be difficult to process. These continuous data streams need to be stored smartly so that query searches are efficient. In this ... ver más