Resumen
In the design of the six degrees of freedom (6-DOF) flight simulation system, the unmodeled dynamic, transient performance and steady-state performance of the system are generally concerned. Considering that the model of flight simulation system is highly nonlinear and requires high response speed and high stability, this paper applies L1
L
1
adaptive controller to the control of flight simulation platform. The controller has a low-pass filter in feedback loop to avoid high frequencies in the control signals, and the required transient performance can be enhanced by increasing the adaptive gain, which can improve the transient, stability, and smoothness of the flight simulator platform. The performance of the L1
L
1
adaptive controller is obtained by comparison with the traditional model reference adaptive controller (MRAC). In addition to maintaining the good transient response of MRAC, the L1
L
1
adaptive controller improves the stability of the system. The output amplitude of the actuator is reduced by 39.95%, which effectively reduces the performance requirements of the actuator. Some additional experimental evaluations are carried out to show the performance of the controller.